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1. Overview of Smoldyn

Smoldyn is a computer program which simulates the dynamics of reaction-diffusion
systems on a microscopic scale.  While the code has been written to be platform
independent, most recent development has been done on a Macintosh, running OS 10.2.1.
It has also been compiled on a Linux system.  OpenGL support (which is standard with
most modern operating systems) is required for graphical output.

Molecules in the simulation are represented individually, diffuse within a
rectanguloid volume by Brownian motion, and undergo simple chemical reactions.  The
timescale considered is short enough that diffusion within the simulation volume is
explicitly modeled using exact molecular positions, but is long enough that momenta and
molecular orientations can be assumed to take on average values.  This is often called the
Smoluchowski level of approximation (and hence the name of the program).  A further
approximation is that molecules do not occupy volume.  Time steps are synchronous,
alternating steps in which molecules diffuse and those in which they react.  Space is
defined as an arbitrary dimensional rectanguloid volume which has fixed walls.  The
walls can be reflective, absorbing, or periodic.  Chemical reactions may be zeroth order,
unimolecular, or bimolecular, and may have any number of products.  While it is not
currently possible to include surfaces or other structures in the system other than the
walls that bound the simulation space, it is possible to account for fixed volumes that are
excluded from the simulation volume.  The algorithms for Smoldyn are described in a
research paper written by Dennis Bray and myself titled “Stochastic simulation of
chemical reactions with spatial resolution and single molecule detail.”   The paper has
been submitted to the Journal of Physical Chemistry and can be provided upon request.

Smoldyn was written for computational biologists and computational chemists.
While a significant amount can be done with the program without an understanding of
how the algorithms work, this approach can easily lead to misleading results.  Also,
Smoldyn does not, and cannot hope to, include all the functionality that might be desired.
Instead, it was written with a framework that allows extensions to be made relatively
easily, although this still requires a moderate commitment and familiarity with the C
language.

2. The Configuration File

2.1  Starting Smoldyn

Before running Smoldyn, the parameters for a simulation need to be written in a text
format configuration file and saved to disk.  Some sample configuration files should have
been included with the executable program, one of which is presented in section 2.5 of
this documentation.  When Smoldyn is run, the program asks for the name of the
configuration file and for a few additional parameters; then it loads the file, runs the
simulation, and terminates.  The only user input that is processed during the simulation is
for simple graphics manipulation and simulation pausing.

The name of the configuration file is typically given to Smoldyn after the program is
running, when it asks for the name of a configuration file.  At the text prompt, type in the
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configuration file name, including file path information.  Spaces are allowed in the file
name or file path.  Here are some examples, using a configuration file called config and
Macintosh file path notation:

config is in same directory as Smoldyn: config
config is in a subdirectory of where Smoldyn is: :folder:config
Absolute path name, starting from the volume: Mac HD:files:folder:config

It should also be possible to have a relative file path that ascends the file tree, as well as
descending the tree, although I have not figured out how to do this with the Macintosh
file system yet.  Standard file path notation should also work with PCs or with Linux, but
have not been tested.

After the configuration file name is entered, Smoldyn asks for runtime flags, where
options are the characters ‘q’, ‘p’, ‘-’, or a combination of characters.  ‘q’ is used for quiet
operation, in which no diagnostics or parameters are displayed, and is minimally useful.
‘p’ indicates that the simulation should be set up and that all diagnostics and parameters
should be calculated and displayed, but then the actual simulation should not be run.
This is useful for choosing appropriate parameters for complex simulations.  A ‘-’ is used
to indicate that neither the ‘q’ nor ‘p’ options are desired.

It should also be possible to run Smoldyn from a Unix style command line, in which
case the name of the configuration file and the runtime flags can be entered on the same
command line, thus removing the need for text entry during program execution.  In this
case, the order of the file name and the flags is unimportant and any runtime flags need to
be preceded by a ‘–’.  I have not figured out how to do this yet using the Macintosh
system.

With the exception of graphics, which cannot be saved, all output from Smoldyn is
saved to text files, allowing their analysis with a wide variety of other software.  These
output file names are declared in the configuration file, as explained below.  These output
files can be saved in the same file folder as the configuration file, or in a sub-directory of
that folder.

2.2  Configuration file format

The design of a simulation can be broken down into two portions.  One portion
includes the parameters of the physical system, including its shape, the molecules that are
present, and the reactions that take place.  These parameters are entered in the
configuration file using a variety of statements and are simulated using the core program.
Here are some examples of statements:

dim 3 3 dimensional system
high_wall 0 100 r properties of a system boundary
time_start 0 starting time for the simulation
mol 10 CheY 50 50 50 creation of 10 CheY molecules
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The other portion of a simulation is the action of the experimenter, which includes
measurements of the system and external perturbations to the system.  These actions are
listed, also in the configuration file, with a series of commands with execution times; they
are not considered by Smoldyn until they are supposed to happen.  When a command is
supposed to be executed, Smoldyn processes it with a runtime command interpreter,
which is an auxiliary portion of the program that is designed to be easily modified.  Here
are some examples of commands:

cmd e ifno asp stop conditional command, run at every iteration
cmd @ 20 molcount outfile molecules are counted and recorded at time 20

Simulation parameters need to be entered using the formats shown in the table
given below.  Formatting errors should be caught by Smoldyn, causing a program
termination and, hopefully, a useful error message.  On each line of input, Smoldyn reads
a word that tells what the line contains and then reads the number of items that it expects.
Both too few items and too many items cause errors, although it is always possible to add
comments to the end of a line using a number sign.  In many cases, lines may entered in
any order, although some basic definitions need to be entered near the top of the file.
Default values are used for parameters that are not defined in the configuration file.
While many instructions can only be entered once, such as the system dimensionality,
others can be entered multiple times, such as lines to define various collections of
molecules.

Reactions are entered as a block of definitions, beginning with the word
“start_reaction” and ending with “end_reaction”, between which only instructions that
are relevent to reactions are allowed.  Reactions are stored internally with two
fundamental parts: a reactant table and a list of reactions, including both rates and
products.  The reactant table associates reactants with numbered reactions but does not
give further details about them; in effect it is only the set of species on the left side of the
arrows in a list of reactions.  The reaction list includes rate constants and lists of
products; in effect it is the set of species on the right side of the arrows.  This structure is
used in the reaction section of the input file as well.  A confusing aspect of reactions is
that reversible reactions (and some so-called continuation reactions) require a parameter
from which Smoldyn can figure out where to place multiple reaction products to prevent
immediate recombination.  This issue is explained in section 3 of this documentation.

Since Smoldyn does not use any particular set of units, it is up to the user to make
sure units are consistent.  Some useful conversion factors are:

10–6 cm2s–1 = 10–10 m2s–1 = 100 mm2s–2 = 0.1 mm2ms–1

1 M–1s–1 = 10–3 m3mol–1s–1 = 1.66x10–27 m3s–1 = 1.66x10–18 mm3ms–1.

2.3  Configuration file statements

Statements about the configuration file

# text
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Comment.  A ‘#’ symbol indicates that the rest of the line is a comment.

read_file filename
Read some other configuration file, returning to the present one when that
one has been read.

end_file
End of configuration file.  This line is optional, as Smoldyn can also just
read until the file ends.

Definition of system parameters

dim dim
Dimensionality of the system.  Must be at least one, and is typically
between 1 and 3.  Larger numbers are permitted as well.

names name1 name2 … namen
Names of the types of molecules present in the system.  Standard naming
conventions are followed, in that the name should start with a letter and
spaces are not permitted.

difc name float
Isotropic diffusion constant of molecule type name.  Default value is 0.

difm name float0 float1 … floatdim*dim–1
Square root of diffusion matrix of name (the dot product of this matrix and
itself is the anisotropic diffusion matrix).  The matrix has dim2 terms (dim
is the system dimensionality), listed row by row of the matrix; the matrix
is supposed to be symmetric.  If this line is not entered, isotropic diffusion
is assumed, which leads to a faster runtime.  While a matrix is used for
diffusion if one is given, the value stored with difc is used for reaction
rate calculations.  If difc is not entered, the trace of the square of this
matrix, divided by the system dimensionality, is used as a proxy for the
isotropic diffusion coefficient to allow reaction rates to be estimated.  This
line is most useful for restricting diffusion to a plane or a line, in which
case the square root of the diffusion coefficient is given for each diagonal
element of the matrix where there is diffusion and 0s are place on diagonal
elements for axes where diffusion is not possible, as well as on off-
diagonal elements.

low_wall dim pos type
Creates a lower boundary for the simulation volume.  This wall is
perpendicular to the dimension dim such that all locations between pos
and the position of the corresponding upper boundary are considered to be
within the simulation volume.  The type of wall is given in type, which
should be one of four single letter codes: ‘r’ means a reflecting wall, ‘p’
means a periodic wall (also called wrap-around or toroidal), ‘a’ means an
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absorbing wall, and ‘t’ means a transparent wall.  Transparent walls imply
an unbounded system and may lead to slow simulations.

high_wall dim pos type
Identical to the definition for low_wall, although this creates the upper
boundary for the simulation volume.

max_mol int
Maximum possible number of molecules for which memory should be
allocated.  The simulation terminates if more molecules are required than
are allocated initially.  Note that most reactions require a few extra
molecule spaces for processing.

mol nmol name pos0 pos1 … posdim–1
Simulation starts with nmol type name molecules at location pos.  Each of
the dim elements of the position may be a number to give the actual
position of the molecule or molecules, or the letter ‘u’ to indicate that the
position for each molecule should be a random value between the
bounding walls, chosen from a uniform density.

Simulation performance statements

rand_seed int
Seed for random number generator.  If this line is not entered, the current
time is used as a seed, producing different sequences for each run.

accuracy float
A parameter that determines the quantitative accuracy of the simulation,
on a scale from 0 to 10.  Low values are less accurate but run faster.
Default value is 10, for maximum accuracy.  When accuracy is 0,
bimolecular reactions are only checked for pairs of reactants that are both
within the same virtual box; with higher accuracy values, reactants in
nearest neighboring boxes are considered as well, and then when accuracy
is 10, reactants in all types of neighboring boxes are checked.

molperbox float
Virtual boxes are set up initially so the average number of molecules per
box is no more than this value.  The default value is 5.  boxsize is an
alternate way of entering comparable information.

boxsize float
Rather than using molperbox to specify the sizes of the virtual boxes,
boxsize can be used to request the width of the boxes.  The actual box
volumes will be no larger than the volume calculated from the width given
here.
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Graphical display statements

graphics str
Type of graphics to use during the simulation.  Currently, the only options
are ‘none’ and ‘opengl’.  If this line is not entered, no graphics are shown.

graphic_iter int
Number of time steps that should be run between each update of the
graphics.  Default value is 1.  This line is irrelevent if graphics aren’t
being used.

frame_thickness int
Thickness of the frame that is drawn around the simulation volume, in
points.  Default value is 2.  This line is irrelevent if graphics aren’t being
used.

display_size name int
Size of molecule of type name for display to the graphical output.  The
default value is 3, indicating that each molecule is displayed with a small
square; 0 indicates that a molecule should not be displayed and larger
numbers yield larger squares.

color name red green blue
Red, green, and blue values for displaying molecules of type name.  Each
value should be between 0 and 1.  Default values are 0 for each parameter,
which is black.  Some useful colors: black is 0 0 0, brown is 0.6 0.6 0, red
is 1 0 0, orange is 1 0.7 0, yellow is 0.8 0.9 0, green is 0 1 0, blue is 0 0 1,
violet is 0.6 0 0.6, grey is 0.4 0.4 0.4, white is 1 1 1, and blue-green is 0
0.6 0.5.

Simulation time statements

time_start float
Starting point for simulated time.

time_stop float
Stopping time of simulation, using simulated time.  The simulation
continues past the time_stop value by less than one time step.

time_step float
Time step for the simulation.  Longer values lead to a faster runtime, while
shorter values lead to higher accuracy.  Also, longer values lead to
bimolecular reactions that behave more as though they are activation
limited, rather then diffusion limited.

time_now float
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Another starting time of simulation.  Default value is equal to time_start.
If this time is before time_start, the simulation starts at time_start;
otherwise, it starts at time_now.

Statements about the runtime command interpreter

output_root str
Root of path where text output should be saved.  Spaces are permitted.
Output files are saved in the same folder as the configuration file,
modified by this string.  See the description for output_files.  Make sure
that the destination folder has been created and that the string is terminated
with a colon (and started with a colon if needed).

output_files str1 str2 … strn
Declaration of filenames that can be used for output of simulation results.
Spaces are not permitted in these names.  Any previous files with these
names will be overwritten.  The path for these filenames starts from the
configuration file and may be modified by a root given with output_root.
For example, if the configuration file was called with :folder:config.txt
and output_root was not used, then the output file out.txt will appear in
the folder folder too.  If the configuration file was called with
:folder:config.txt and the output root was given as results:, then the
output file goes to the results sub-folder of the folder folder.  The
filename “stdout” results in output being sent to the standard output.  In
most cases, it is also permissible to not declare filenames, in which case
output is again sent to the standard output.

output_file_number int
Starting number of output file name.  The default is 0, meaning that no
number is appended to a name (e.g. the file name out.txt is saved as
out.txt).  A value larger than 0 leads to an appended file name (if 1 is
used, then out.txt is actually saved as out_001.txt).  Note that the
command incrementfile increments the file number before it runs the rest
of the command.

max_cmd int
Maximum length of command queue.  Default value is 10.

cmd b,a,e string
cmd @ time string
cmd n int string
cmd i on off dt string

Declaration of a command to be run by the run-time interpreter, where the
final portion labeled string is the actual command.  The character
following cmd is the command type, which may be ‘b’ for before the
simulation, ‘a’ for after the simulation, ‘e’ for every time step during the
simulation, ‘@’ for a single command execution at time time, ‘n’ for every



9

n’th iteration of the simulation, or ‘i’ for a fixed time interval.  For type
‘i’, the command is executed over the period from on to off with intervals
of at least dt (the actual intervals will only end at the times of simulation
time steps).  See section 2.4 for the commands that are available.  Note
that command execution times may not be exactly correct because of
round-off errors.

Reaction definitions

start_reaction
Start of reaction definition.  Between this instruction and “end_reaction”,
all lines need to pertain to this order of reaction.  It is permissible to list
reactions of the same order in multiple blocks, provided that only the first
block includes a max_rxn statement and that sufficient reactions are
declared with that statement.

order int
Order of the reactions being declared (0, 1, or 2).

max_rxn max_rxn
Maximum number of reactions that will be declared of the given order.

reactant r0 r1 … rnrxn–1
reactant name r0 r1 … rnrxn–1
reactant name1 + name2 r0 r1 … rnrxn–1

Declaration of reactants and reaction names for zeroth order,
unimolecular, and bimolecular reactions, respectively.  The listed
molecule names are the reactants and the following strings are the
respective reaction names.  Note that there are spaces before and after the
‘+’ symbol.

rate r rate
Reaction rate constant for reaction called r.  Units for the reaction rate
constant are (volume)order–1 times inverse time.  These rates are converted
by the program into probabilities or binding radii.  To enter the simulation
parameters directly, use rate_internal.

rate_internal r float
Internal value for reaction rate information, which can be used to override
the internal rates that are calculated from the rate entry.  For zeroth order
reactions, this is the expectation total number of reactions per time step;
for unimolecular reactions, this is the reaction probability per time step for
each reactant molecule; and for bimolecular reactions, this is the binding
radius.

product r name + name +  …  + name
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List of products for reaction r.  Note that there are spaces before and after
each ‘+’ symbol.

product_param r i
product_param r p,x,r,b,q,y,s float
product_param r o,f prod_name pos0 pos1… posdim–1

Parameters for the initial placement of products of reaction r.  A product
parameter also affects the binding radius of the reverse reaction.  These
are explained in section 3.  In the first format, a type of ‘i’ indicates that
the reverse reaction is ignored for calculations.  The second format uses
one of the type letters shown: ‘p’ and ‘q’ are geminate rebinding
probabilities, ‘x’ and ‘y’ are maximum geminate rebinding probabilities,
‘r’ and ‘s’ are ratios of unbinding to binding radii, and ‘b’ is a fixed
unbinding radius.  The third format yields products that have a fixed
relative orientation, which is either randomly rotated with ‘o’, or not
rotated with ‘f’.  In the absence of better information, a useful default
parameter type is either ‘x’ or ‘y’, with a value of about 0.2.

end_reaction
End of reaction definition.  Reaction instructions are no longer recognized
but other simulation instructions are.

2.4  Runtime commands

Commands are stored in a queue, which is checked and executed just before the
simulation starts, during the simulation, and just after it ends.  All commands are declared
in the configuration file using one of the forms shown above, where the final string is the
actual command text.  In some cases, the command text allows additional commands to
be entered as well, allowing conditional expressions.  Following is a list of possible
command strings.

Simulation control commands

stop
Stop the simulation.

pause
This puts the simulation in pause mode.  If opengl graphics are used,
continuation occurs when the user presses the spacebar.  When graphics
are not used, the user is told to press enter.

File manipulation commands

overwrite filename cmd
Erase the output file called filename and then run command cmd.
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incrementfile filename cmd
A new output file is created based upon the filename.  The first time this is
called the filename is appended with a “_001”, which is then incremented
with subsequent calls to “_002”, and so on.  These numbers precede any
suffix on the filename.

Conditional commands

ifno name cmd
Run command cmd if no molecule of type name remains.

ifless name num cmd
Run command cmd if there are less than num molecules of type name
remaining.

ifmore name num cmd
Run command cmd if there are more than num molecules of type name.

System manipulation commands

pointsource name num pos0 pos1 … posdim
Create num new molecules of type name and at location pos.

killmol name
Kill all molecules of type name.

equilmol name1 name2 prob
Equilibrate these molecules.  All molecules of type name1 and name2 will
be randomly replaced with one of the two types, where type name2 has
probability prob.

replacexyzmol name pos0 pos1 … posdim–1
If there is a non-diffusing molecule at exactly position pos, it is replaced
with one of type name.  This command stops after one molecule is found.

modulatemol name1 name2 freq shift
Modulates molecules of types name1 and name2, just like equilmol, but
with a variable probability.  Every time this command executes, any of the
two types of molecules in the system are replaced with a molecule of type
name1 with probability cos(freq*t+shift), where t is the simulation time,
and otherwise with a molecule of type name2.

react1 name rxn
All molecules of type name are instantly reacted, resulting in the products
and product placements given by the unimolecular reaction named rxn.
Note that name does not have to be the normal reactant for reaction rxn.
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excludebox xlo xhi
excludebox xlo xhi ylo yhi
excludebox xlo xhi ylo yhi zlo zhi

This keeps all molecules from entering a rectanguloid box within the
system volume.  Use the first form for one dimension, the second for two
dimensions, and the third for three dimensions.  Molecules that start
within the box can stay there, but any molecule that tries to diffuse into the
box is returned to its location at the previous time step.  This command
needs to be run at every time step to work properly.

excludesphere x rad
excludesphere x y rad
excludesphere x y z rad

This keeps all molecules from entering a sphere within the system volume.
Use the first form for one dimension, the second for two dimensions, and
the third for three dimensions; the coordinates given are the sphere center
and rad is the sphere radius.  Molecules that start within the sphere can
stay there, but any molecule that tries to diffuse into the sphere is returned
to its location at the previous time step.  This command needs to be run at
every time step to work properly.

includeecoli
An E. coli shape is defined as a cylinder with hemispherical endcaps,
where the long axis of the bacterium extends the length of the x-axis
within the system walls and the radius of both the cylinder and the
endcaps is half the spacing between the walls that bound the y-axis.  This
command moves any molecule that diffuses out of the E. coli shape back
to its location at the previous time step, or to the nearest surface of the E.
coli if it was outside at the previous time step as well.  This command does
not need to be run at every time step to work properly.  This only works
with a 3 dimensional system.

System observation commands

molcount filename
Each time this command is executed, one line of display is printed to the
listed file, giving the time and the number of molecules for each molecular
species.  The ordering used is the same as was given in the names
command.

listmols filename
This prints out the identity and location of every molecule in the system to
the listed file name, using a separate line of text for each molecule.

listmols2 filename
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This is very similar to listmols but has a slightly different output format.
Each line of text is preceded by the “time counter”, which is an integer
that starts at 1 and is incremented each time the routine is called.  Also, the
names of molecules are not printed, but instead the identity numbers are
printed.

listmols3 name filename
This is identical to listmols2 except that it only prints information about
molecules of type name.

molpos name filename
This prints out the time and then the positions of all molecules of type
name on a single line of text, to the listed filename.

molmoments name filename
This prints out the positional moments of the molecule type given to the
listed file name.  All the moments are printed on a single line of text; they
are the number of molecules, the mean position vector (dim values), and
the variances on each axis and combination of axes (dim2 values).

savesim filename
This writes the complete state of the current system to the listed file name,
in a format that can be loaded in later as a configuration file.  Note that
minor file editing is often desirable before simulating a file saved in this
manner.  In particular, the saved file will declare its own name as an
output file name, which will erase the configuration file.

2.5  Sample configuration file

The following sample file executes a Lotka-Voltera reaction scheme, using
parameters that are essentially the same as those used by Gillespie in his classic paper (J.
Phys. Chem. 81:2340-2361, 1977).  Using a vaguely ecological concept, R stands for
rabbit and F stands for fox.  The reactions are

R Æ 2 R
R + F Æ F
F Æ nothing

The simulation is run in three dimensions with periodic boundary conditions.

# Simulation file for Lotka-Voltera reaction

graphics opengl
graphic_iter 5
accuracy 5
# rand_seed 5



14

dim 3
names R F
max_mol 20000
molperbox 1

difc R 100
difc F 100
color R 1 0 0
color F 0 1 0
display_size R 2
display_size F 3

time_start 0
time_stop 100
time_step 0.001

low_wall 0 -100 p
high_wall 0 100 p
low_wall 1 -100 p
high_wall 1 100 p
low_wall 2 -10 p
high_wall 2 10 p
mol 1000 R u u u
mol 1000 F u u u

max_cmd 10
cmd b pause
cmd e ifno R stop
cmd e ifno F stop

start_reaction
order 1
max_rxn 2
reactant R Rmultiply      # R -> 2R
rate Rmultiply 10
product Rmultiply R + R
reactant F Fdie          # F -> 0
rate Fdie 10
end_reaction

start_reaction
order 2
max_rxn 1
reactant R + F Feat     # R+F -> 2F
rate Feat 8000
product Feat F + F
end_reaction

end_file

3. Algorithm details
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3.1 Binding and unbinding radii

For every bimolecular reaction, Smoldyn has to calculate the correct binding radius
from the reaction rate that is given in the configuration file.  Also, for every reaction that
leads to multiple products, Smoldyn has to determine the correct unbinding radius, using
whatever product parameter is supplied, if any.  While these binding and unbinding radii
are well defined microscopic parameters (at least within the context of the analytical
model system that is simulated), the meanings of the experimental rate constants, as well
as those given in the configuration file, are not nearly as well defined.  Instead, those rate
constants depend on the conditions under which they were measured.  Smoldyn accounts
for this by attempting to guess the experimental conditions, using a process described
here.  If Smoldyn’s guess is correct, the simulated reaction rates should exactly match the
experimental rates (not including edge effects, which are typically negligible unless one
reactant is fixed at or near an edge).

The product parameters are:

Use these if reversible reactions were measured at equilibrium
p probability of geminate reaction (f).
x maximum probability of geminate reaction (fmax).
r unbinding radius relative to binding radius (su/sb).
b fixed length unbinding radius (su).

Use these if reversible reactions measured with all product removed as it was formed
q probability of geminate reaction (f).
y maximum probability of geminate reaction (fmax).
s unbinding radius relative to binding radius (su/sb).
o fixed offset of products, rotationally randomized (su).
f fixed offset of products, not rotationally randomized (su).
i reaction is declared irreversible (su=0).

In all cases, Smoldyn assumes that rate constants were measured using an
effectively infinite amount of reactants that were started well mixed and that then were
allowed to react until either an equilibrium was reached for reversible reactions, or a
steady-state reaction rate was reached for irreversible reactions.  Only in one of these
cases is mass action kinetics correct and is the rate constant actually constant.  The
precise experimental assumptions are clarified with the following examples.

1.  A+BÆC

The rate constant is assumed to have been measured at steady state, starting with a well-
mixed system of A and B.  No product parameter is required.  At steady-state, the
simulation matches mass action kinetics.

2.  XÆA+B
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There is no bimolecular reaction, so no binding radius is calculated.  The default
unbinding radius is 0, although it is possible to define a different one.  If the product
parameter is p, q, r, or s, an error is returned due to the lack of a binding radius.  If it is
not given or is i, x, or y, the unbinding radius is set to 0.  If it is b, f, or o, the requested
separation is used.  At steady-state, the simulation matches mass action kinetics.

3.  A+B´C

If the reversible parameter is p, x, b, or r, the forward rate constant is assumed to have
been measured using just this system of reactions after the system had reached
equilibrium.  The product parameter is used to yield the correct probability of geminate
recombination if possible, or the desired unbinding radius.  In this case, the simulation
matches mass action kinetics at equilibrium.  If the product parameter is q, y, s, o, f, or i,
then it is assumed that the forward rate constant was measured at steady-state and with all
C removed as it was formed, thus preventing any geminate reactions.  The unbinding
radius is set as requested, using the binding radius if needed.  In this case, the simulated
forward reaction rate is higher than requested due to geminate rebindings.

4.  A+B´CÆY

The second reaction is ignored for determining parameters for A+B.  Instead, the first
reaction is considered as though the rates were determined experimentally using just the
system given in example 3.  If the product parameter is p, x, r, or b, the simulated reaction
rate for the forward reaction A+BÆC will be lower than the requested rate because there
are fewer geminate reactions than there would be with the equilibrium system.
Alternatively, it will be higher than the requested rate if the product parameter is q, y, s,
o, f, or i, because there are some geminate reactions.

5.  XÆA+BÆC

The binding radius for the second reaction is treated as in example 1, without
consideration of the first reaction.  The unbinding radius for the first reaction is found
using the binding radius of the second reaction.  Here, product parameters p and q are
equivalent, x and y are equivalent, and r and s are equivalent.  The actual reaction rate for
the second reaction, found with a simulation, will be higher than the requested value due
to geminate rebindings that occur after the dissociation of X molecules.

6.  XÆA+B´C

The A+B´C binding and unbinding radii are treated as in example 3.  Another
unbinding radius is required for the first reaction, which is found as in example 5, using
the binding radius from the second reaction.  Mass action kinetics are not followed.

7.  X´A+B´C
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The binding radii and unbinding radii for each bimolecular reaction are found as in
example 3, independent of the other bimolecular reaction.  The simulated rates may be
different from those requested because of differing unbinding radii.

8.  XÆA+BÆC, A+BÆD

The binding radii for the two bimolecular reactions are each found as in example 1.  The
unbinding radius for the first reaction cannot be determined uniquely, because the two
forward reactions from A+B are equivalent and are likely to have different binding radii.
Smoldyn picks the binding radius for the first forward reaction that is listed.  Thus, if the
product parameter for dissociation of X is p, the requested geminate rebinding probability
will be found for the reaction A+BÆC, but a different value will be found for the
reaction A+BÆD.

9.  C´A+B´C

This reaction scheme might represent two different pathways by which A and B can bind
to form an identical complex.  However, Smoldyn cannot tell which reverse reaction
corresponds to which forwards reaction.  Instead, for both determining the binding and
unbinding radii, it uses the first reverse reaction that is listed.

The general principle for calculating binding radii is that Smoldyn first looks to see
if a reaction is directly reversible (i.e. as in example 3, without any consideration of
reaction network loops or other possible causes of geminate reactions).  If it is and if the
reversible parameter is p, x, r, or b, then the binding radius is found under the assumption
that the rate constant was measured using just this reaction, at equilibrium.  If not, or if
the reversible parameter is q, y, s, o, f, or i, then Smoldyn calculates the binding radius
with the assumption that the rate constant was measured using just that reaction at steady-
state and with all product removed as it is formed.

Unbinding radii typically require a reversible parameter (except as in example 2).
If the parameter is b, o, or f, the requested unbinding radius is used.  If it is i, the
unbinding radius is set to 0.  Otherwise, it can only be calculated with the knowledge of
the binding radius.  If the reaction is directly reversible, the binding radius for the reverse
reaction is used.  If it is not directly reversible but the products can react, as in examples
5, 6, and 8, then the binding radius for the first reaction that is listed is used.

3.2 Time steps

The simulated time in Smoldyn increases with discrete increments.  However, a
major focus of program design has been to make it so that results are indistinguishable
from those that would be obtained if the simulated time increased continuously.  This
goal cannot be achieved perfectly.  Instead, the algorithms are written so that the
simulation approaches the Smoluchowski description of reaction-diffusion systems as the
time step is reduced towards zero, and so it maintains as much accuracy as possible for
longer time steps.  This topic is discussed in detail in the research paper “Stochastic
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simulation of chemical reactions with spatial resolution and single molecule detail” by
myself and Dennis Bray (it was submitted to J. Phys. Chem. in September 2002).  Some
more discussion of this topic is given here.

In concept, the system is observed at a fixed time, then it evolves to some new state,
then it is observed again, and so forth.  A complication is that commands allow the user
to manipulate the system at fixed times; it is typically best for these manipulations to
immediately precede observations.  For example, if a command states that some
collection of molecules should be removed at time t, then an observation that is also at
time t should show that they have been removed.  This leads to the following sequence of
program operations:

---------------  time = t  ---------------
manipulate system
observe system
diffuse molecules
surface interactions
reactions

0th order reactions
1st order reactions
2nd order reactions
add reaction products to system

surface interactions
-------------  time = t + ∆t  -------------

To follow this scheme, manipulation commands should be entered before observation
commands (the other order is possible as well if observations are desired before
manipulations).  After commands are run, graphics are displayed to OpenGL if that is
enabled.  The evolution over a finite time step starts by diffusing all mobile molecules.
In the process, some end up across the walls of the boundary and others are within the
binding radii of other reactants.  Wall collisions are treated by reflecting molecules back
into the simulation volume (for reflective boundaries).  Next, reactions are treated in a
semi-synchronous fashion.  They are asynchronous in that all zeroth order reactions are
simulated first, then unimolecular reactions, and finally bimolecular reactions.  With
bimolecular reactions, if a molecule is within the binding radii of two different other
molecules, then it ends up reacting with only the first one that is checked, which is
arbitrary.  Reactions are synchronous in that reactants are removed from the system as
soon as they react and products are not added into the system until all reactions have been
completed.  This prevents reactants from reacting twice during a time step and it prevents
products from one reaction from reacting again during the same time step.  As it is
possible for reactions to produce molecules that are outside the system walls, those
products are then reflected back into the system.  At this point, the system has fully
evolved by one time step.  All molecules are inside the system walls and essentially no
pairs of molecules are within their binding radii (the exception is that products of a
bimolecular reaction with an unbinding radius might be initially placed within the
binding radius of another reactant).
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Each of the individual routines that is executed during a time step exactly produces
the results of the Smoluchoski description, or yields kinetics that exactly match those that
were requested by the user.  However, the simulation is not exact for all length time steps
because it cannot exactly account for interactions between the various phenomena.  For
example, if a system was simulated that only had unimolecular reactions and the products
of those reactions did not react, then the simulation would yield exactly correct results
using any length time step.  However, if the products could react, then there are
interactions between reactions and there would be errors.  In this case, the error arises
because Smoldyn does not allow a molecule to be in existance for less than the length of
one time step.

3.3 Reactions near surfaces

Smoldyn does not treat reactions near walls any differently from other reactions.
Moreover, if walls are reflective and a reactant happens to be less than a binding radius
from a wall, then part of the “binding volume” is inaccessible to other potential reactants;
again, there is no special treatment for this.

When molecules have excluded volume, even inert impermeable surfaces can affect
the local concentrations of chemicals.  The obvious effect is that a molecule cannot be
closer to a surface than its radius, leading to a concentration of zero closer than that.  In a
mixture of large and small molecules, Brownian motion tends to push the large molecules
up against surfaces while the small molecules occupy the center of the accessible volume,
creating more complex concentration effects.  These effects do not occur when excluded
volume is ignored, as it is in Smoldyn, in which case surfaces do not affect local
concentrations.

While surfaces do not affect concentrations of non-reacting molecules, they do
affect reaction rates.  Consider the reaction A+BÆC, where A is fixed and B diffuses.  If
essentially all A molecules are far from a surface, the diffusion limited reaction rate is
found by solving the diffusion equation for the radial diffusion function (RDF) with the
boundary conditions that the RDF approaches 1 for large distances and is 0 at the binding
radius (see the paper by myself and Dennis Bray titled “Stochastic simulation of chemical
reactions with spatial resolution and single molecule detail”).  This leads to the
Smoluchowski rate equation

† 

k = 4pDs b

However, for an A molecule that is near a surface, an additional boundary condition is
that the gradient of the 3 dimensional RDF in a direction perpendicular to the surface is
zero at the surface.  This makes the solution of the reaction rate sufficiently difficult that I
have not attempted to solve it, but the result is different from the simple result given
above. This surface effect is an issue whenever the A molecule is within several binding
radii of a surface and is especially pronounced when it is closer to the surface than its
binding radius.  For cases in which the A molecule is more than one binding radius from
the surface, B molecules are going to take longer than usual to reach the region between
the A and the surface, leading to a decreased reaction rate.  It is suspected that the
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reaction rate decreases monotonically as the A molecule approaches and then crosses a
surface.

A special case that can be solved exactly occurs when the A molecule is exactly at
the surface, such that half of the binding volume is accessible to B molecules and half is
inaccessible.  Now, the RDF inside the system volume is identical to the RDF for the case
when the A molecule is far from a surface.  The logic is to assume that this is true and to
then observe that it already satisfies the additional boundary condition.  Using this RDF,
the diffusive flux is half of the diffusive flux for an A molecule far from a surface,
because only half of the binding surface is exposed to the system.  Thus, the diffusion
limited reaction rate for the situation in which a reactant is fixed exactly at a surface is

† 

k = 2pDs b

The situation changes some when simulation time steps are sufficiently long that
rms step lengths are much longer than binding radii.  Now, the probability of a reaction
occuring during a time step is a function of only the binding volume.  Thus, there are no
surface effects at all when an A molecule is fixed anywhere in the simulation volume that
is greater than or equal to one binding radius away from a surface.  As the A molecule is
moved closer to the surface, the reaction rate decreases in direct proportion to the binding
volume that is made inaccessible to B molecules.  An especially easy situation is that
when the A molecule is exactly at the surface, the reaction rate is half of its value when
the A molecule is far from a surface, which is the same as the diffusion limited result.

In conclusion, reaction rates are reduced near surfaces and the effect is different for
diffusion limited and activation limited reactions.  However, for both cases, and almost
certainly for all cases in between, the reaction rate is exactly half when an A molecule is
fixed at a surface, compared to when it is far from a surface.  A few tests with Smoldyn
using the files reactW#, described below, suggested that these surface effects are likely to
be minimal for most situations, although it is good to be aware of their potential.  The
exception is that there are large surface effects when molecules are fixed with a
significant portion of the binding volume outside the simulation volume.

4.  Tests of Smoldyn

4.1  Initial test: bounce1, bounce2, and bounce3

The simplest test is just to make sure that the Smoldyn applicaton is able to launch
and run properly, using a very simple configuration file.  These tests were also useful for
getting the graphical output to work properly.  Each file just shows a collection of
molecules that bounce around inside the system walls.  bounce1 works in one dimension,
bounce2 in two dimensions, and bounce3 in three dimensions.  When running bounce3,
note that the arrow keys can be used to rotate the system about the middle, the ‘=’ and ‘-’
keys zoom in and out, the ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’, and ‘Z’ keys rotate the system about the
individual axes (sometimes rotating the object out of the visible region), the space bar
pauses the simulation, the ‘0’ key resets rotations and zooming to initial values, and ‘Q’
quits the simulation.
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4.2  Diffusion rates: diffi and diffa

diffi was used to quantitatively test isotropic diffusion by letting several collections
of molecules diffuse outwards from the center of space.  The moments of the molecular
distributions are saved as functions of time.  The zeroth moment is the number of
molecules, which obviously ought to stay at a constant value with no fluctuations.  This
was verified.  The first moment is a vector quantity representing the mean position of the
set of molecules.  Because of symmetry, its value should stay near the initial position (the
origin), although fluctuations are expected.  These fluctuations are given with the
equation

† 

mean - starting point ª
2Dt

n

D is the diffusion coefficient, t is the simulation time, and n is the number of molecules.
This equation agrees well with simulation data.  The second moment is a matrix quantity
which gives the variance on each pair of axes of the distribution of positions.  For
example, the variance matrix element for axes x and y is

† 

vxy =
1
n

xi - x ( ) yi - y ( )
i=1

n

Â

The overbars indicate mean values for the distribution.  Equations are analogous for other
pairs of axes.  Because diffusion on different axes is independent, the off-diagonal
variances (vxy, vxz, and vyz) are expected to be about 0, but with some fluctuations, which
was verified.  However, the diagonal variances (vxx, vyy, and vzz) are each expected to
increase as approximately

† 

vxx ª vyy ª vzz ª 2Dt

This behavior was verified for the simulation data, using a variety of simulation time
steps and diffusion coefficients.  However, the fluctuations of the variances were not
analyzed.

diffa was used to investigate anisotropic diffusion.  In this case, the diffusion
equation is

† 

˙ u = — ⋅ D—u

u can be interpreted as either the probability density for a single molecule or as the
concentration of a macroscopic collection of molecules.  D is the physical diffusion
matrix, which is the square of the matrix that is entered in the configuration file (matrix
square roots can be calculated with MatLab, Mathematica, or other methods).  If D is
equal to the identity matrix times a constant, D, the equation reduces to the standard
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isotropic diffusion equation.  Using the file diffa, it was verified that the mean position
for anisotropic diffusion is the initial position using diffusion matrices with and without
off-diagonal elements.  Using molecules that diffused in just the x-z plane, the variance
on each axis was confirmed to be nearly equal to 2Dt, using the D value for each axis.  It
was also verified that the more complicated diffusion matrix yielded qualitatively
reasonable diffusion, although the variances were not checked quantitatively.

4.3  Zeroth order reaction rates: zeroreactf, zeroreactm, zeroreacts

The zeroth order reaction nothingÆA proceeds with the mass action rate equation

† 

n t( ) = n 0( ) + kt

n(0) and n(t) are the initial and time dependent numbers of A molecules and k is the
zeroth order reaction rate.  Using the file zeroreactf, zeroreactm, and zeroreacts (fast,
medium, and slow) it was confirmed that the simulation results conform closely to the
theoretical result, using rates ranging from 100 molecules per simulation time step to 0.01
molecules per time step.  The simulation showed fluctuations in the production rates, as
expected, but these were not analyzed.

4.4  Unimolecular reaction rates: unireact1, unireactn

unireact1 was used to check unimolecular reaction rates using a wide range of
reaction rates, and thus a wide range of reaction probabilities in each time step.  Each
molecular species defined in the configuration file has a single unimolecular reaction
pathway and simply goes away when it reacts.  These chemical equations are each
equivalent to simply AÆnothing.  The theoretical rate equation is

† 

n t( ) = n 0( )e-kt

n(t) is the number of molecules remaining after time t, n(0) is the initial number of
molecules, and k is the first order rate constant.  It was confirmed that simulation data
agreed well with the equation using reaction probabilities that ranged from 0.001 to 0.632
per time step.

unireactn tests reaction probabilities using multiple reaction mechanisms.  For
convenience in analysis, the reactant concentration is kept constant by having the reactant
as a reaction product.  The reactions are

AÆA+B kB = 2
AÆA+C kC = 1
AÆA+D kD = 0.5

The system is started with only A molecules, so the theoretical number of B molecules as
a function of time is
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† 

nB t( ) = kBnAt

Analogous equations hold for C and D.  Simulation results closely matched these
theoretical equations when a small time step was used.  However, a large time step leads
to a relatively large probability that an individual A molecule will react by one of the
three pathways during the time step.  If this probability is p (the sum of the probabilities
for each of the three reaction pathways), then the probability that an A should react twice
during the same time step is proportional to p2.  In the simulation, a molecule can only
react once during a time step, leading to errors whenever p2 is large, and hence when p is
large.

4.5  Bimolecular reactions, different reactants: react ABs, react ABm, react ABf

The reaction A+BÆC is easy to analyze using mass action kinetics with the
condition that there are the same numbers of A and B molecules initially.  The solution
for the number of A molecules (or B molecules) as a function of time is

† 

n t( ) =
1

n 0( )
+

kt
V

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

-1

reactABs, reactABm, and reactABf (slow, medium, and fast) were used to test the
simulated reaction rate.  In all cases, but especially with the fast reaction rate, the
simulated rate is faster initially than the analytical rate because the simulation starts with
molecules randomly distributed whereas the analytical result assumes a steady-state
distribution.  However, after enough time passes for a steady state distribution to be
formed, the simulated results agree quite well with the analytical results.  These files
examine reaction rates that have ratios of mutual rms step lengths to binding radii ranging
from 0.146 (bireactABf, diffusion limited) to 2.15 (bireactABs, activation limited).

4.6  Bimolecular reactions, same reactant: reactAAs, reactAAm, and reactAAf

The reaction A+AÆC was investigated as well.  Using mass action kinetics, the
analytical solution for the number of A molecules as a function of time is

† 
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This was tested using the files reactAAs, reactAAm, and reactAAf.  All files agreed well
with the analytical equation.  The configuration file ratios of mutual rms step length to
binding radius ranged from 0.145 for the fast version (diffusion limited) to 1.67 for the
slow version (activation limited).  As before, the simulated reaction rate was faster
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initially than the analytical rate because of different initial molecule distributions.
However, the rates agreed well after the simulation distribution had time to reach a
steady-state profile.

4.7 Reactions near walls: reactW1, reactW2, reactW3, reactW4

In principle, an impermeable surface should not change the local concentration of a
reactant, although it can affect reaction rates.  This was investigated using the same
system as for the A+BÆC reaction shown above, except that all A molecules were fixed
near the surfaces of the simulation volume.  The binding radius for all files is 0.763 and
the rms step length of the B molecules is 0.632, leading to reactions that are intermediate
between diffusion and activation limited.  In the file reactW1, the A molecules are
positioned 5 units inside reflective walls, which is large compared to the rms step length
or binding radius.  Kinetics are quite different from those described in section 4.5 because
of the correlated A molecule positions and surface effects, although an analytical
equation was not derived.  Changing the distance from the walls to 1 unit in reactW2,
which is now close to the rms step length and binding radius, makes essentially no
difference in the output.  In reactW4, the A molecules are placed on the walls and the
boundaries are made periodic, which again has no effect.  Other tests involved increasing
or decreasing the time steps by a factor of 10 for these files, which also had no significant
effects.  Thus, surface effects are minimal for reaction rates when the entire binding
volume is accessible to diffusing molecules.

In reactW3, the A molecules are placed on the walls and the boundaries are
reflective so that only half of the binding volume is accessible.  The reaction rate in this
case should be exactly half of the rate for the other files, although it was consistently
found that the ratio of the rates is closer to 0.55, for a wide range of time step lengths.
The cause of this difference has not been identified.

4.8 Reversible reactions: equil

Reversible reactions involve geminate recombination issues, as discussed in section
3.  The accuracy of reversible reaction rates was investigated with the configuration file
equil, in which an equilibrium is set up for the reaction A+B´C.  From standard
chemistry, the equilibrium constant is related to the ratio of product to reactant
concentrations and to the ratio of the forward to reverse rate constants,

† 

K =
nCV
nA nB

=
k f

kr

V is the total system volume.  The configuation file equil starts with equal numbers of A
and B molecules and no C molecules.  Using the above equation and this starting point,
the solution for the equilibrium number of A molecules is
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† 

nA =
-V + V 2 + 4KnA 0( )V

2K

nA(0) is the initial number of A molecules.  It was verified that the simulation result
approached this value.  As usual, fluctuations were not analyzed.

4.9  Simple reaction networks: lotvolt

The file lotvolt just runs a simple Lotka-Volterra system of reactions to make sure
that the various components of Smoldyn work together.  This configuration file is
identical to the one shown in section 2.5.  Results were not analyzed quantitatively.

5.  Copyright and Citation

Nearly all of the components of Smoldyn were written by myself (Steven Andrews),
with the exceptions being a few short routines that were copied from Numerical Recipies
in C (Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1988),
which are acknowledged where appropriate.  The compiled version of Smoldyn, the
components of the source code that are not copyrighted by others, and this documentation
are copyrighted by myself.  However, permission is granted for any non-commercial use
of the program and of the source code.  The only portion of the code that may not be
modified is the copyright information.  No warrenty is made for the performance or
suitability of any portion of Smoldyn.

I expect to maintain a working copy of the program indefinitely.  The current
download site for Smoldyn is http://sahara.lbl.gov/~sandrews/index.html, where the
program may be obtained for free.  If improvements are made to the code or bugs are
fixed, then I would appreciate a copy of the modified source code.  If you find any bugs
in the code, please let me know!  My e-mail address is ssandrews@lbl.gov.

If Smoldyn is used to a significant extent, it may be appropriate to cite or
acknowledge its use.
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Smoldyn Code Documentation
As a program without documented code is both unwritable and unmaintainable,

here is the documentation.  As can be seen from looking at the code, I don’t particularly
like comments in the code itself or excessive white space.  However, the description
below should be complete for the main source files.  Other files are documented in my
library documentation.

The main code is separated into three files.  smoldyn.c contains the main() routine
and some high level routines for running the simulation.  It also includes essentially all of
the OpenGL graphics routines.  smollib.c and its header smollib.h contain all structure
declarations and all low level routines, including ones that allocate and free memory,
calculate simulation parameters, run the simulation, and provide diagnostics.  This is the
core of the program and, hopefully, should rarely require modifications.  smollib2.c and
its header smollib2.h include all runtime interpreter commands.  It is expected that more
commands will be desired on a regular basis, so it is expected that this library will be
appended regularly.  As the file smollib.c is written in ANSII C and does not contain any
graphics calls, it should be completely portable.  The other files should be portable to any
system that supports OpenGL, and can be modified trivially to run on other systems.

1.  Include files

smoldyn.c, non-OpenGL
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "smollib.h"
#include "smollib2.h"
#include "string2.h"
#include "SimCommand.h"

smoldyn.c, with OpenGL
#include "opengl2.h"
#include "gl.h"
#include "glut.h"

smollib.h
#include "SimCommand.h"

smollib.c
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "Rn.h"
#include "Zn.h"
#include "random.h"
#include "string2.h"
#include "math2.h"
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#include "rxnparam.h"
#include "SimCommand.h"
#include "smollib.h"
#include "smollib2.h"
#include "VoidComp.h"

smollib2.h
#include "SimCommand.h"
#include "smollib.h"

smollib2.c
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "Rn.h"
#include "Zn.h"
#include "random.h"
#include "string2.h"
#include "smollib2.h"
#include "opengl2.h"
#include "SimCommand.h"

These are simple and self-explanatory.

2.  Constants, macros, and global variables

smoldyn.c
#define SMOLDYN_VERSION 1.53
simptr Sim;
int Vb,*Ctr;
time_t Tstt;

smollib.c
#define RANDTABLEMAX 4095
#define CHECK(A) if(!(A)) goto failure
#define CHECKS(A,B) if(!(A)) {strncpy(erstr,B,STRCHAR);goto failure;}
float GaussTable[RANDTABLEMAX+1];

The notation used is that macros and constants defined with the pre-processor are in
all capitals, global variables are preceded by a capital letter, and local variables are in all
lower case.  Variables that have a meaning have meaningful names, whereas those that
are scratch space have generic names that simply indicate the variable types.  All of these
macros and global variables are global only within their source file, so that they are not
accessible to other files.

SMOLDYN_VERSION is the current version number of Smoldyn.  This number has been
fluctuating greatly, although with an upward trend, but I’ll try to make it more
useful in the future.
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Sim is a global variable for the current simulation structure.  This, as well as the other
global variables in smoldyn.c are only used when graphics are being shown using
OpenGL, because OpenGL does not allow variables to be passed in the normal way
between functions.

Vb is a global flag for verbose operation, equal to 1 if yes, 0 if no.

Ctr is a global array of simulation counters, which count the total number of events that
occur during a simulation.  Index 0 is for zeroth order reactions, 1 is for first order
reactions, 2 is for second order reactions within a partition, 3 is for second order
reactions between partitions, and 4 is for wall collisions.

Tstt is a global variable for the starting time of simulation execution, allowing the total
runtime to be determined.

RANDTABLEMAX is the maximum element number of the random number conversion table,
which is used both for allocating the table (with 1 more element) and as a bit mask
for random number routines.  Note that it needs to be 1 less than an integer power
of 2.

CHECK is a useful macro for several routines in which any of several problems may occur,
but all problems result in freeing structures and leaving.  Program flow goes to the
label failure if A is false.  Many people would consider both the use of a macro
function and the use of a goto statement to be bad programming practice, and
especially bad when used together.  However, in this case it significantly improves
code readability.  As usual, partially defined structures should always be kept
traversable and in good order so they can be freed at any time.  However, there is
one subtle situation where CHECK can cause surprising behavior, which must be
looked out for:

if(test)
CHECK(a==b); WRONG

else {... }

The problem is that CHECK is a macro for an if() statement, so the else in the above
example becomes an else for the CHECK, rather than an else for the if(test)
portion, as intended.  Instead, this should be coded with braces:

if(test) {
CHECK(a==b); } RIGHT

else {... }

CHECKS is identical to CHECK, except that it also copies the included string to the variable
erstr if a failure occurs.  This is useful for error reporting.  The same comments
made above are important here as well.

GaussTable is a table to convert uniform random values to normally distributed ones.
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3.  Local variables

It has proven useful to use consistent names for local variables for code readability.
In places, there are exceptions, but the following table lists the typical uses for most local
variables:

variable        type                       use                            
a float binding radius for bimolecular reaction
b,b2 int box address
blist boxptr* list of boxes, index is [b]
boxs boxssptr pointer to box superstructure
bptr boxptr pointer to box
bval float unbinding radius for bimolecular reaction
ch char generic character
cmd cmdptr pointer to a command
cmds cmdssptr pointer to the command superstructure
d int dimension number
dc1,dc2 float diffusion coefficients for molecules
dead moleculeptr* list of dead molecules, index [m]
difc float* list of diffusion coefficients, index [i]
dsum float sum of diffusion coefficients
dim int dimensionality of space
dt float time step
er int error code
erstr char* error string
flt1,flt2 float generic float variable
fptr FILE* file stream
got int[] flag for if parameter is known yet
i int molecule identity, reactant number, or generic integer
i1,i2,… int molecule identities
indx int* dim dimensional index of box position
itct int count of number of items read from a string
j int number of reaction for certain i
lctr int line number counter for reading text file
line char[] complete line of text
line2 char* pointer to unparsed portion of string
live moleculeptr** list of live molecules, index [ll][m]
ll int index of live list
m,m2,m3 int index of molecule in list
m1,m2,m3 int* scratch space matrices of size dimxdim
mlist moleculeptr* list of molecules, index is [m]
mols molssptr pointer to molecule superstructure
mptr moleculeptr pointer to molecule
mptr1,mptr2 moleculeptr pointer to more molecules
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name char** names of molecules, index is [i]
nbox int number of boxes
ni2o int value of nident^order
nident int number of molecule identities
nl int* number of live molecules in a live list, index [ll]
nm,nm2 char[] name of molecule or reaction
nmol int number of molecules in list
nprod int*,int number of products for reaction [r]
nrxn int* number of reactions for [i]
o2 int order of second reaction
optr int* pointer to the order of reaction
order int order of reaction
p int reaction product number
pgemptr float* pointer to probability of geminate recombination
prod moleculeptr** list of products for reaction [r], index is [p]
r int reaction number
r2 int reaction number for second reaction
rate float* requested rate of reaction [r]
rate2 float* internal rate parameter of reaction [r]
rate3 float actual rate of reaction
rev int code for reaction reversibility; see findreverserxn
rname char** names of reactions, index is [r]
rpar float,float* reversible parameter, index is [r]
rpart char,char* reversible parameter type, index is [r]
rptr int* pointer to reaction number
rxn rxnptr pointer to a reaction structure
rxn2 rxnptr pointer to a second reaction structure
side int* number of boxes on each side of space, index [d]
sim simptr pointer to simulation structure
smptr simptr* pointer to pointer to simulation structure
step float rms step length of molecule or molecules
str1 char[] generic string
table int** table of reaction numbers for [i][j]
top int top of empty molecules in dead list
total int total number of reactions in list
v1,v2,v3 int* scratch space vectors of size dim
w int index of wall
wlist wallptr* list of walls, index is [w]
word char[] first word of a line of text
wptr wallptr pointer to wall

4.  Structures, allocation, and freeing routines – smollib.h, smollib.c

While Smoldyn is written in C, it uses an object oriented approach to programming,
making the proper maintenance of structures one of the central aspects of the program.
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The structures are described below.  In general, the basic objects are molecules, walls,
and virtual boxes, each of which has its own structure.  In many cases, these items are
grouped together into superstructures, which are basically just a list of fundamental
elements, along with some more information that pertains to the whole list.  Finally, a
simulation structure is a high level structure which contains all the parameters and the
current state of the simulation.

An aspect of structures that is important to note, especially if changes are made, is
which structures own what elements.  For example, a molecule owns its position vector,
meaning that that piece of memory was allocated with the molecule and will be freed
with the molecule.  On the other hand, a molecule does not own a virtual box, but merely
points to the one that it is in.

All allocation routines return either a pointer to the structure that was allocated, or
NULL if memory wasn’t available.  Assuming that they succeed, all structure members are
intitiallized, typically to 0 or NULL depending on the member type.  All the memory
freeing routines are robust in that they don’t mind NULL inputs or NULL internal pointers.
However, this is only useful and robust if allocation is done in an order that always keeps
the structure traversable and keeps pointers set to NULL until they are ready to be
initiallized.

Molecules

typedef struct moleculestruct {
  float *pos; dim dimensional vector for position
  float *posx; dim dimensional vector for old position
  int ident; identity of molecule; 0 is empty
  struct boxstruct *box; } *moleculeptr;  pointer to box which molecule is in

moleculestruct (declared in smollib.h) is a structure used for each molecule.  pos
and posx, both of which are owned by the structure, are always valid positions,
although not necessarily within the system volume.  posx is the position from the
previous time step, used to determine if a molecule crossed a surface.  ident should
always be between 0 and nident-1, inclusive.  A molecule type of 0 is an empty
molecule for transfer to the dead list.  Except during setup, box should always point
to a valid box.

moleculeptr molalloc(int dim)
molalloc allocates and initiallizes a new moleculestruct.  The box and diffusion
matrix members are returned as NULL.

void molfree(moleculeptr mptr)
molfree frees the space allocated for a moleculestruct, as well as its two position
vectors.

See also:
assignmolecs - assigns molecules to boxes, setting the box pointer
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Molecule superstructure

typedef struct molsuperstruct {
  float *difc; diffusion constants for each identity
  float *difstep; rms diffusion step for each identity
  float **difm; diffusion matrix for each identity
  int *display; size of molecule in graphical display
  float **color; RGB color vector for each identity
  moleculeptr *live[2]; live molecules in system (0 mobile, 1 fixed)
  moleculeptr *dead; list of dead molecules
  int max; size of each molecule list
  int nl[2]; number of molecules in live lists
  int nd; total number of molecules in dead list
  int top; } *molssptr; index for dead list; above are resurrected

molsuperstruct (declared in smollib.h) contains and owns information about
molecular properties and it also contains and owns three lists of molecules.
Diffusion is described with difc, which is a nident length vector of diffusion
constants; difstep is a nident length vector of the rms displacements on each
coordinate during one time step if diffusion is isotropic; and difm is a nident length
list where each element is either a NULL value if diffusion is isotropic or a dimxdim
size diffusion matrix (actually the square root of the matrix).  For the molecule lists,
the former is separated into two parts.  The first set is the live list, which are those
molecules that are actually in the system; the others are in the dead list, are empty
molecules, and have no influence on the system.  The two parts of the live list are
the mobile molecules (live[0]) and the fixed molecules (live[1]).  They are
differentiated solely by whether their diffusion constants are zero and are separated
into two lists to speed up bimolecular reaction routines.  All lists have size max.
Upon initiallization, all molecules are created as empty molecules in the dead list
and both live lists full of NULLs, whereas during program execution, all lists are
typically partially full.  When lists are properly ordered, each live list, ll, has
molecules from element 0 to element nl[ll]-1, inclusive, and is filled with NULLs
from nl[ll] to max-1.  Similarly, the dead list is filled with empty molecules from 0
to nd-1, and NULLs from nd to max-1; in this case, top is equal to nd.  Chemical
reactions destroy molecules, turning live ones into empty molecules, and they create
new molecules, in which dead ones are resurrected.  After a reaction, there are
generally some empty molecules scattered throughout the live lists and some active
molecules in the dead list, from top to nd-1, inclusive.  While these mis-sorted
molecules should not cause a problem with other routines, they should be sorted
relatively promptly.  No order is maintained for the molecules within the respective
live lists.  The total number of molecules in all the lists is constant and is equal to
max.  If more molecules are needed in the system than the total number allocated,
the program sends an error message and ends; in the future, it may be possible to
dynamically create larger lists.
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Example of the lists:

index                   live[0]              live[1]               dead
8 max ? max ? max ?
7 - - -
6 - - -
5 - - -
4 - - -
3 nl[0] - - nd -
2 2 nl[1] - top 1
1 1 0 0
0 0 3 0

Here, each list has max=8, and so is indexed with m from 0 to 7.  A ‘?’ is memory
that is not part of that which was allocated, a ‘-’ is a NULL value, a ‘0’ is an empty
molecule, and other numbers are other identities (‘1’ and ‘2’ are mobile, whereas
‘3’ is immobile).  The ‘0’s in the the two live lists are to be transferred to the dead
list during the next sort, while the ‘1’ in the dead list is to be moved to mobile live
list.

molssptr molssalloc(int dim,int max,int nident);
molssalloc allocates and initiallizes a molecule superstructure with max molecule
spaces in each of the three lists.  max must be at least 1.  The dead list is filled with
empty molecules.  The molecule boxes are left as NULLs, and need to be set.  Book
keeping elements for the lists are set to their initial values.

void molssfree(molssptr mols,int nident);
molssfree frees both a superstructure of molecules and all the molecules in all its
lists.

See also:
molsort - sorts the live and dead molecules, putting them in the proper lists.
molssoutput - displays and checks many parameters of a molecule superstructure.

Walls

typedef struct wallstruct {
  int wdim; dimension number of perpendicular to wall
  int side; low side of space (0) or high side (1)
  float pos; position of wall along dim axis
  char type; properties of wall
  struct wallstruct *opp; } *wallptr; pointer to opposite wall

wallstruct (declared in smollib.h) is a structure used for each wall.  The type may
be one of four characters, representing the four possible boundary conditions.
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type               boundary
r reflecting
p periodic
a absorbing
t transparent

Pointers to the opposite walls are used for wrap-around diffusion, but are simply
references.  There is no superstructure of walls, but, instead a list of walls is used.
Walls need to be in a particular order: walls numbered 0 and 1 are the low and high
position walls for the 0 coordinate, the next pair are for the 1 coordinate, and so on
up to the 2*dim–1 wall.  These walls are designed to be bounds of simulated space,
and are not configured well to act as membranes.

wallptr wallalloc(void);
wallalloc allocates and initializes a new wall.  The pointer to the opposite wall
needs to be set.

void wallfree(wallptr wptr);
wallfree frees a wall.

wallptr *wallsalloc(int dim);
wallsalloc allocates an array of pointers to 2*dim walls, allocates each of the walls,
and sets them to default conditions (reflecting walls at 0 and 1 on each coordinate)
with correct pointers in each opp member.

void wallsfree(wallptr *wlist,int dim);
wallsfree frees an array of 2*dim walls, including the walls.

See also:
checkwalls - takes care of proper molecule behavior at walls.
walloutput - displays most parameters of a collection of walls.

Boxes

typedef struct boxstruct {
  int *indx; dim dimensional index of the box
  int nneigh; number of neighbors in list
  int midneigh; logical middle of neighbor list
  struct boxstruct **neigh; all box neighbors, using sim. accuracy
  int *wpneigh; wrapping code of neighbors in list
  int nwall; number of walls in box
  wallptr *wlist; list of walls that cross the box
  int maxmol[2]; allocated size of live lists
  int nmol[2]; number of molecules in live lists
  moleculeptr *mol[2]; } *boxptr; lists of live molecules in the box
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boxstruct (declared in smollib.h) is a structure for each of the virtual boxes that
partition space.  Each box has a list of its neighbors, in neigh, as well as a little
information about them.  This list extends from 0 to nneigh-1.  From 0 to midneigh-
1 are those neighbors that logically precede the box, meaning that they are above or
to the left, whereas those from midneigh to nneigh-1 logically follow the box.  If
there are no periodic boundary conditions, the logical order is the same as the
address order; however, this is not neccesarily true with the inclusion of wrap-
around effects.  In wpneigh is a code for each neighbor that describes in what way it
is a neighbor: 0 means that it’s a normal neighbor with no edge wrap-around;
otherwise pairs of bits are associated with each dimension (low order bits for low
dimension), with the bits equal to 00 for no wrapping in that dimension, 01 for
wrapping towards the low side, and 10 for wrapping towards the high side.  This
might be clearer in the Zn.c documentation.  The neighbors that are listed depend
on the requested simulation accuracy:

accuracy              neighbors      wrap-around
<3 none no
3 to <6 nearest no
6 to <9 nearest yes
>9 all yes

Boxes also have lists of mobile molecules (mol[0], allocted to size maxmol[0], and
filled from 0 to nmol[0]-1), immobile molecules (mol[1], etc.) molecules, and walls
(wlist, allocated and filled with nwall pointers) within them.  While the lists are
owned by the box, the members of the lists are simply references, rather than
implications of ownership.  The same, of course, is true of the neighbor list,
although the box owns the wpneigh list.  If wall or neighbor lists are empty, the list
is left as NULL, whereas the molecule list always has a few spaces in it.

boxptr boxalloc(int dim);
boxalloc allocates and minimally initiallizes a new boxstruct.  The only list
allocated is indx, which is set to 0’s.

void boxfree(boxptr bptr);
boxfree frees the box and its lists, although not the structures pointed to by the lists.

boxptr *boxesalloc(int dim,int nbox);
boxesalloc allocates and initializes an array of n boxes, including the boxes.  Again,
initiallization is minimal, with only the indx array of the boxes allocated, which is
set to 0’s.

void boxesfree(boxptr *blist,int nbox);
boxesfree frees an array of boxes, including the boxes.

See also:
expandbox - expands the size of the molecule lists of a box.
boxoutput - displays most parameters of a box.
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Box superstructure

typedef struct boxsuperstruct {
  float mpbox; requested number of molecules per box
  float boxsize; requested box width
  int nbox; total number of boxes
  int *side; number of boxes on each side of space
  float *min; position vector for low corner of space
  float *size; length of each side of a box
  boxptr *blist; } *boxssptr; actual array of boxes

boxsuperstruct (declared in smollib.h) expresses the arrangement of virtual boxes
in space, and owns the list of those boxes and the boxes.  Either mpbox or boxsize
are used and not both.  Boxes are arranged in a rectanguloid grid and exactly cover
all space inside the walls.  The structure of the boxes in space is the same as that of
a dim rank tensor, allowing tensor indexing routines to be used to convert between
box addresses and indicies.  The box index along the d’th dimension of a point with
position x[d] is

indx[d]=(x[d]-min[d])/size[d];

where integer arithmetic takes care of the truncation.  Convering from box index to
address is easy with the tensor routine in Zn.c, or can also be calculated quickly
with the following code fragment, which outputs the box number as b,

for(b=0,d=0;d<dim;d++)   b=side[d]*b+indx[d];

Converting the box number to the indicies can also be done, but the Zn.c routine is
easiest for this.

boxssptr boxssalloc(int dim);
boxssalloc allocates and initializes a superstructure of boxes, inculding arrays for
the side, min, and size members, although the boxes are not added to the structure;
i.e. blist is set to NULL and nbox is 0.  Initial values for side and size members are
all set to 1, min values are set to 0, and mpbox is set to 5; all of these values are
typically changed later.

void boxssfree(boxssptr boxs);
boxssfree frees a box superstructure, including the boxes.

See also:
pos2box - returns a pointer to the box that includes a position.
setupboxes - sets up the parameters of a box superstructure.
assignmolecs - assigns molecules to boxes.
boxssoutput - displays most parameters of a box superstructure.
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Reactions

typedef struct rxnstruct {
  int order; order of reactions listed: 0, 1, or 2
  int *nrxn; number of reactions for each set of reactants
  int **table; lookup list of reaction numbers
  int lists; live lists that have reactions
  int total; total number of reactions listed
  char **rname; names of reactions
  float *rate; list of requested reaction rates
  float *rate2; reaction rates modified for compuation
  float *rpar; parameter for reaction of products
  char *rpart; type of parameter in rpar
  int *nprod; number of products for each reaction
  moleculeptr **prod; } *rxnptr; templates of products for each reaction

rxnstruct (declared in smollib.h) is a structure used for a complete set of zeroth
order, unimolecular, bimolecular reactions, or higher order reactions.  All
components of all lists in the structure are owned by the structure.  While these
structures are complicated, they are also quite versatile and fast to use.  The table
member is a lookup table of all possible reactant combinations, returning an index
value of the reaction, if one occurs, called a reaction number.  The reaction
parameters, such as the reaction names, rates, and product list are then listed
sequentially in order of reaction numbers.  The dimensionality of the lookup table is
the reaction order.  If order is 0, then there are no reactants to worry about; nrxn
and table are allocated and initiallized so that nrxn[0]=0 and table[0]=NULL, and
there are no higher indicies allowed.  If order is 1, then nrxn[i] is the number of
unimolecular reactions that molecules of type i can undergo and table[i] is a list
of nrxn[i] reaction numbers.  For example, table[i][j] is the reaction number of
the j’th unimolecular reaction for molecule i.  Clearly, empty molecules are
included in these lists, accessed with nrxn[0] and table[0], where the former
should always equal 0 and the latter should always be NULL.  If order is 2, the same
scheme is followed, although now i is an index for a two dimensional array.  For
example, the number of bimolecular reactions possible between molecules i1 and
i2 is found by first defining i=nident*i1+i2 with the result of nrxn[i] possible
reactions.  For all reaction orders, nrxn and the first index of table extend from 0 to
nidentorder.  lists is a parameter used to prevent having to scan molecule lists for
reactions that don’t exist.  For zeroth order reactions, lists is set to 0.  For first order
reactions, lists is 0 if no molecules have any reactions, 1 if only mobile molecules
have reactions, 2 if only immobile molecules have reactions, and 3 for both.  For
second order reactions, lists is 0 if no molecules have any reactions, 1 for only
mobile-mobile, 2 for only mobile-immobile, 3 for both.
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total is the total number of reactions listed in the structure.  rate, rate2, rpar,
rpart, nprod, and the first indicies of rname and prod are all allocated to have total
elements.  The reaction rates are given in rate, although these are generally bulk
reaction rates rather than microscopic molecular parameters.  rate2 is the rate
information used by the simulation routines: if order is 0, rate2 is the average
number of molecules produced per time step; if order is 1, rate2 is the probability
that a molecule reacts during one time step; if order is 2, rate2 is the squared
collision distance between the relevent pair of reactant molecules.  Note that the
value of rate is independent of the time step, whereas the value of rate2 depends
strongly on the time step.  Both rate and rate2 are initiallized to –1, and stay that
way until they are replaced, if they are replaced.  All rate2 values should be
replaced and checked by setrates before a simulation is run.  rpar is the reversible
parameter for the potential reactivity of the products, and can take on any of several
meanings, where its type is stored in rpart.  See the discussion above for a list of
the reversible types and parameters, as well as how they are used.

Following are some code fragments for traversing a reaction structure of arbitrary
order.  The former fragment walks through the reactions of all reactants and
identifies the reaction number for each; the latter one walks through the reactions
and identifies the molecule templates for each. To simplify them, the variables
order, nident, nrxn, table, total, rate, nprod, and prod have been defined to be
equal to the respective elements of a reaction structure or simulation structure.

ni2o=intpower(nident,order);
for(i=0;i<ni2o;i++)

for(j=0;j<nrxn[i];j++)
r=table[i][j];

for(r=0;r<total;r++)
for(p=0;p<nprod[r];p++)

mptr=prod[r][p];

rxnptr rxnalloc(int order,int nident,int total);
rxnalloc allocates and initializes a reaction structure, leaving it fully set up but with
zero reactions.  It can be used as is, but it won’t do anything until reactions are
added.  order and total need to be at least 0 and nident needs to be at least 1.

void rxnfree(rxnptr rxn,int nident);
rxnfree frees a reaction structure for any order reaction.

See also:
findreverserxn - searches reaction structure for reverse reactions.
setrates - sets the simulation rate2 values, using the macroscopic rate values.
setproducts - sets initial product separations to account for reversible reactions.
calcrate - calculates macroscopic rates from microscopic rate2 values.
loadrxn - loads a reaction structure from a configuration file.
doreact - actually causes a specified reaction to occur.
zeroreact - checks and takes care of zeroth order reactions.
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unireact - checks and takes care of first order reactions.
bireact - checks and takes care of second order reactions.
rxnoutput - displays most parameters of a reaction structure.

Simulation

typedef struct simstruct {
  int dim; dimensionality of space.
  int nident; number of identities, including empty mols.
  char **name; names of molecules
  int graphics; type of graphics: 0 for none, 1 for opengl
  int graphicit; number of time steps per graphics update
  int framepts; thickness of frame for graphics
  float accur; accuracy, on scale from 0 to 10
  float time; current time in simulation
  float tmin; simulation start time
  float tmax; simulation end time
  float dt; simulation time step
  rxnptr rxn[3]; list of reactions
  molssptr mols; molecule superstructure
  wallptr *wlist; list of walls
  boxssptr boxs; box superstructure
  cmdssptr cmds; command superstructure
  float *v1,*v2,*v3; scratch space, each size dim or nident
  float *m1,*m2,*m3; scratch space, each size dim x dim
  int *z1,*z2,*z3;  } *simptr; scratch space, each size dim or nident

simstruct (declared in smollib.h) contains and owns all information that defines
the simulation conditions, the current state of the simulation, and all other
simulation parameters.  The scratch space is allocated when the structure is
allocated and is for the use of any routine that uses a simulation structure.  The v
and z scratch space vectors have dimensions that are the larger of dim or nident.

simptr simalloc(int dim,int nident,char *root);
simalloc allocates a simulation structure.  The difc and difm lists are allocated and
initialized.  Default diffusion matrics are all 0’s, except with –1 in the first element.
Walls are allocated and inialized.  The box superstructure is allocated and
initialized, although the list of boxes is left as NULL.  The molecule superstructure is
left as NULL.  The commands superstructure is allocated, but the queue of commands
and the output file lists are left as NULLs.  root is required for the command
superstructure.

void simfree(simptr sim);
simfree frees a simulation strucutre, including every part of everything in it.

See also:
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loadsimul - loads simulation structure information from configuration file.
setupstructs - in charge of setting up all structures, including the simulation file.
simoutput - displays most parameters of a simulation file.

5.  Reaction parameter calculation routines – smollib.c

int findreverserxn(simptr sim,int i1,int i2,int r,int *optr,int *rptr);
int setrates(simptr sim,int order);
int setproducts(simptr sim,int order,char *erstr);
float calcrate(simptr sim,int i1,int i2,int r,float *pgemptr);

These routines work primarily with reaction structures and are intended to be run
during program initiallization, although after most of the reaction structures have been set
up.  They convert mass action reaction rates to microscopic simulation parameters and
vice versa.

int findreverserxn(simptr sim,int i1,int i2,int r,int *optr,int *rptr) {
findreverserxn inputs the reaction defined by reactants i1 and/or i2 and reaction
number r and looks to see if there is a reverse reaction.  If both i1 and i2 are 0, then
the forward reaction is zeroth order and there is no direct reverse reaction.  If either
i1 or i2 is 0, the forward reaction is first order, and if neither reactant is 0, the
forward reaction is second order.  If there is no reaction number r, an error code of
–1 is returned.  If there is a direct reverse reaction, meaning the products of the
input reaction are themselves able to react to form identities i1 and i2 (or just one
of them if the input reaction is first order), then the function returns 1 and the order
and reaction number of the reverse reaction are pointed to by optr and rptr.  If
there is no direct reverse reaction, but the products of the input reaction are still able
to react, the function returns 2 and optr and rptr point to the first listed
continuation reaction.  If the products do not react, the function returns 0 (this also
includes the situation where the products of the input reaction are A and B and there
is no A+B reaction, although A and/or B can undergo unimolecular reactions, as
well as all situations in which there are three or more products of a forward
reaction).  Either or both of optr and rptr are allowed to be sent in as NULL values if
the respective pieces of output information are not of interest.

int setrates(simptr sim,int order);
setrates is used to convert the requested reaction rates to values that are useful for
the simulation routines.  Values in the rate element are read and values are written
to rate2.  If a rate element is less than zero, it is assumed to have been unassigned
and is skipped; in this case, the respective value for rate2 is not modified.  For
zeroth order reactions, rate2 is the expectation number of molecules that should be
produced in the entire simulation volume during one time step, which is
rate*dt*volume.  For first order reactions, rate2 is the probability of a unimolecular
reaction occuring for an individual reactant molecule during one time step, which is
rate/sum*[1–exp(–sum*dt)], where sum is the sum of the defined rate values for all
unimolecular reactions of the reactant.  For second order reactions, rate2 is the



41

squared binding radius of the reactants, found from bindingradius.  In this case, the
reverse parameter is accounted for in the reaction rate calculation if there is a direct
reverse reaction and if it is appropriate (see the discussion of “Binding and
unbinding radii,” above and the description for findreverserxn).  This routine also
sets the lists member of reaction structures.  The return value of the function is –1
for correct operation.  If errors occur, which is only possible for illegal inputs
(return value of 0) or bimolecular calculations, the reaction number where the error
was encountered is returned.  Other than illegal inputs, the only possible errors arise
from a diffusion constant of 0 for both reactants, or a directly reversible reaction
that has an undeclared reversible type.

int setproducts(simptr sim,int order,char *erstr);
setproducts is used to set the initial separations between reaction products for all
reactions of order order, based on the corresponding rpart character and rpar
parameter.  This is done by calculating the proper separation and then setting the
first value of the template molecule pos vector to this separation, for all appropriate
templates.  If rpart is either ‘o’ or ‘f’, denoting either randomly oriented offset or
fixed orientation offset, then it is assumed  that the template molecule position has
already been set up; it is not modified again by this routine.  Otherwise, it is
assumed that the template molecule position vectors have all values equal to 0
initially.  If there are illegal inputs, 0 is returned by this routine.  If an error occurs,
the reaction number where the error was encountered is returned and a message is
returned in the string erstr, which should have been allocated to size STRCHAR; if all
assignments work correctly, –1 is returned and the string is unchanged; and if a
reversible reaction was undeclared, –1 is returned and a warning is returned in the
string, although the program does not need to terminate.  Possible errors include
trying to set product positions for reactions without products, setting relative
positions for products in which reactions have only one product, are irreversible, or
have multiple reverse reactions, or trying to get a geminate binding probability that
is unachievably high due to too long a time step.  See the discussion in the section
called “Binding and unbinding radii” for more details.

float calcrate(simptr sim,int i1,int i2,int r,float *pgemptr);
calcrate calculates the macroscopic rate constant using the microscopic parameters
that have been calculated or that were initially assigned.  All going well, these
results should exactly match those that were requested initially, although this
routine is useful as a check, and for situations where the microscopic values were
input rather than the mass action rate constants.  For bimolecular reactions that are
reversible, the routine calculates rates with accounting for reversibility if the
product parameter is p, x, r, b, or ?, and not otherwise.  A value of –1 is returned if
input parameters are illegal and a value of 0 is returned if the rate2 value for the
indicated reaction is undefined (<0).  If reversibility is accounted for and pgemptr is
not input as NULL, *pgemptr is set to the probability of geminate recombination of
the reactants; otherwise its value is not changed.
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6.  Initiallization routines – smollib.c

int loadsimul(simptr *smptr,char *fileroot,char *filename,char *erstr);
int loadrxn(simptr sim,FILE *fptr,int *lctrptr,char *erstr);
boxptr pos2box(float *pos,int dim,boxssptr boxs);
int setupboxes(simptr sim);
int setupstructs(char *root,char *name,simptr *smptr,int vb);

Initiallization procedures are meant to be called once at the beginning of the
program to allocate and set up the necessary structures.  These routines call memory
allocation procedures as needed.

int loadsimul(simptr *smptr,char *fileroot,char *filename,char *erstr);
loadsimul loads all simulation parameters from a configuration file, usng a format
described above.  fileroot is sent in as the root of the filename, including all
colons, slashes, or backslashes; if the configuration file is in the same directory as
Smoldyn, fileroot should be an empty string.  filename is sent in as just the file
name and any extension.  erstr is sent in as an empty string of size STRCHAR and is
returned with an error message if an error occurs.  smptr is sent in as a pointer to the
variable that will point to the simstruct; it is returned pointing to a pointer to an
initiallized simstruct.  This routines calls loadrxn to load in any reactions.  The
following things are set up after this routine is completed: all molecule elements
except box; all molecule superstructure elements; all wall elements; box
superstructure element mpbox, but no other elements; no boxes are allocated or set
up; all reaction structure elements except rate2 and the product template position
vectors (pos in each product); the command superstructure, including all of its
elements; and all simulation structure elements except for sub-elements that have
already been listed.  If the configuration file loads successfully, the routine returns
0.  If the file could not be found, it returns 10 and an error message.  If an error was
caught during file loading, the return value is 10 plus the line number of the file
with an error, along with an error message.  If there is an error, all structures are
freed automatically.

int loadrxn(simptr sim,FILE *fptr,int *lctrptr,char *erstr);
loadrxn loads a reaction structure from an already opened disk file pointed to with
fptr.  lctrptr is a pointer to the line counter, which is updated each time a line is
read.  If successful, it returns 0 and the reaction is added to sim.  Otherwise it
returns the updated line counter along with an error message.  If a reaction structure
of the same order has already been set up, this function can use it and add more
reactions to it.  It can also allocate and set up a new structure, if needed.  If this runs
successfully, the complete reaction structure is set up, with the exception of rate2
and the position vectors of the template molecules, which are all set to 0’s (unless
the product parameter type is ‘o’ or ‘f’, in which case they are set up).  If the
routine fails, the reaction structure is freed.

boxptr pos2box(float *pos,int dim,boxssptr boxs);
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pos2box returns a pointer to the box that includes the position given in pos, which is
a dim size vector.  If the position is outside the simulation volume, a pointer to the
nearest box is returned.  This routine assumes that the entire box superstructure is
set up.

int setupboxes(simptr sim);
setupboxes sets up a superstructure of boxes, and puts things in the boxes, including
wall and molecule references.  It requires a simulation structure with most things set
up, but not box stuff; it’s designed for the structure after it’s returned from
loadsimul.  It sets up the box superstructure, then adds indicies to each box, then
adds the box neighbor list along with neighbor parameters, then adds wall
references to each box, and finally creates molecule lists for each box and sets both
the box and molecule references to point to each other.  The molecule list is
6+3√nmol higher than nmol to allow for more molecules; the extra pointers are all set
to NULL.  The function returns 0 for successful operation and 1 if it was unable to
allocate sufficient memory.  At the end, all simulation parameters having to do with
boxes are set up.  However, some lists may still be NULL, if they are empty, where
these are bptr->neigh, bptr->wpneigh, and bptr->wlist.  Of particular note is that
bptr->wpneigh is NULL if no neighbors are wrap-around ones, for whatever reason.

int setupstructs(char *root,char *name,simptr *smptr,int vb);
setupstructs sets up and loads values for all the structures as well as global
variables.  This routine calls the other initialization routines, so they do not have to
be called from elsewhere.  Other minor things are set up here, including setting the
lookup table for normally distributed random numbers.  It also displays the status to
stdout and calls output routines for each structure, allowing verification of the
initiallization.  Send in root and name with strings for the path and name of the input
file.  vb is a flag for verbose operation, 1 for verbose and 0 for quiet.  It returns 0 for
correct operation and 1 for an error.  If it succeeds, smptr is returned pointing to a
simulation structure.  Otherwise, smptr is set to NULL and an error messages is
displayed on stderr.

7.  Simulation routines – smollib.c

int expandbox(boxptr bptr,int n,int ll);
int assignmolecs(simptr sim,int ll);
void diffuse(simptr sim);
int checkwalls(simptr sim);
int molsort(molssptr mols,int difsort);
int doreact(rxnptr rxn,int r,moleculeptr mptr1,moleculeptr mptr2,simptr sim);
int zeroreact(simptr sim);
int unireact(simptr sim);
int bireact(simptr sim,int neigh);

int expandbox(boxptr bptr,int n,int ll);
expandbox is called if it turns out that a box was not allocated with enough space for
molecules.  bptr is a pointer to a box that needs expanding, n is the number of
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additional molecule spaces to add, and ll is the live list to expand.  If n is negative,
the box is shrunk and any molecule pointers that no longer fit are simply left out.
The book keeping elements of the box are updated.  The function returns 0 if it was
successful and 1 if there was not enough memory for the request.

int assignmolecs(simptr sim,int ll);
assignmolecs puts molecules in boxes by overwriting the lists of molecules that are
in each box with molecules from mols.  It only assigns the live list number ll.
Molecules that are outside the set of boxes are assigned to the nearest box.  If more
molecules belong in a box than actually fit, 5 more spaces are allocated using
expandbox.  The function returns 0 unless memory could not be allocated by
expandbox, in which case only some of the molecules are assigned and it returns 1.

void diffuse(simptr sim);
diffuse does the diffusion for all molecules in the live[0] list (mobile), over one
time step.  Walls are ignored and molecules are not reassigned to the boxes.  If there
is a diffusion matrix, it is used for anisotropic diffusion; otherwise isotropic
diffusion is done, using the difstep parameter.

int checkwalls(simptr sim);
checkwalls does the reflection, wrap-around, or absorption of molecules at walls by
checking the current position, relative to the wall positions (as well as a past
position for absorbing walls).  It does not reassign the molecules to boxes or sort the
live and dead ones, although this typically will not be required anyhow.  It returns
the number of wall collisions that were detected and processed during that time
step.

int molsort(molssptr mols,int difsort);
molsort updates the live and dead lists of both a molecule superstructure and the
relevent boxes after a reaction or other changes.  If difsort is 0, it assumes that live
molecules are in the correct live list, otherwise, it sorts this too (the only way it’s
likely to need sorting is if a command changes a molecule’s identity).  First it might
deal with diffusion sorting by moving missorted molecules to the resurrected list.
Afterwards, and in normal operation, it moves the resurrected molecules off the top
of the dead list (those numbered between top and nd-1) to the live list.  Then it
moves the expired molecules from the live list to the dead list.  Finally it compacts
the live list.  Molecule ordering in lists is not preserved.  It is required that the box
numbers for molecules are correct and that the molecule is listed in the box list
corresponding to the master live lists.  The routine returns 0 for normal operation
and 1 if memory could not be allocated when a box was being expanded.

int doreact(rxnptr rxn,int r,moleculeptr mptr1,moleculeptr mptr2,simptr sim);
doreact executes a reaction that has already been determined to have happened.
rxn is the reaction, r is the reaction number and mptr1 and mptr2 are the reactants,
where mptr2 is ignored for unimolecular reactions, and both are ignored for zeroth
order reactions.  Reactants are killed, but left in the live lists.  Any products are
created on the dead list, for transfer to the live list by the molsort routine.



45

Molecules that are created are put at the reaction position, which is the average
position of the reactants weighted by the inverse of their diffusion constants, plus an
offset from the product definition.  The cluster of products is typically rotated to a
random orientation.  If the displacement was set to all 0’s (recommended for non-
reacting products), the routine is fairly fast, putting all products at the reaction
position.  If the rpart character is ‘f’, the orientation is fixed and there is no
rotation.  Otherwise, a non-zero displacement results in the choosing of random
angles and vector rotations.  If the system has more than three dimensions, only the
first three are randomly oriented, while higher dimensions just add the displacement
to the reaction position.  The function returns 0 for successful operation and 1 if
more molecules are required than were initially allocated.

int zeroreact(simptr sim);
zeroreact figures out how many molecules to create for each zeroth order reaction
and then tells doreact to create them.  It returns the number of molecules created, or
–1 if not enough molecules were allocated initially.

int unireact(simptr sim);
unireact determines whether unimolecular reactions occured, considering both live
lists.  Reactions that do occur are sent to doreact to process them.  The function
returns the number of reactions that occured during that time step, or –1 if not
enough molecules were allocated initially.

int bireact(simptr sim,int neigh);
bireact determines whether bimolecular reaction occured, sending ones that do
occur to doreact.  neigh tells the routine whether to consider only reactions between
neighboring boxes (neigh=1) or only reactions within a box (neigh=0).  The former
are relatively slow and so can be ignored for qualitative simulations by choosing a
lower simulation accuracy value.  In cases where walls are periodic, it is possible to
have reactions over the system walls.  The function returns the number of reactions
that occured during that time step, or –1 is not enough molecules were allocated
initially.

A good sequence for using these routines is: cmdcheck, diffuse, assignmolecs,
checkwalls, zeroreact, unireact, bireact, molsort, checkwalls.  The reason for checking
walls after reactions, as well as before, is that products may be created outside the
simulation volume.  This doesn’t really matter, except that commands might care and it
doesn’t look good in a graphical output.  If commands are really picky about molecules
being in the correct boxes, it is also possible to call assignmolecs a second time too.  The
recommended sequence was changed for version 1.51 to put assignmolecs before
checkwalls, with the logic that wall checking assumes that molecules are in the correct
boxes, whereas the reactions are less sensitive.  In most situations, the slowest routine is
expected to be bireact, although essentially all of the routines have to do a significant
amount of scanning through box lists and molecule lists.
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8.  Output routines – smollib.c

void simoutput(simptr sim);
void walloutput(int dim,wallptr *wlist);
void molssoutput(simptr sim);
void boxoutput(int dim,boxssptr boxs);
void boxssoutput(simptr sim);
void rxnoutput(simptr sim,int order);
void checkparams(simptr sim);

These output routines send program parameters and diagnostics to the standard
output.  This is useful for making sure that the program is working as expected and that
the internal parameters have physically sensible values.

void simoutput(simptr sim);
simoutput prints out the overall simulation parameters, including simulation time
information, graphics information, the number of dimensions, what the molecule
types are, the output files, and the accuracy.

void walloutput(int dim,wallptr *wlist);
walloutput prints the wall structure information, including wall dimensions,
positions, and types, as well as the total simulation volume.

void molssoutput(simptr sim);
molssoutput prints all the parameters in a molecule superstructure.  While it should
not be needed, hopefully, this routine looks for and prints out information on
molecules that are not sorted correctly in the live and dead lists.  It also prints out
information about each molecule, including diffusion constants, rms step lengths,
colors, and display sizes.

void boxoutput(int dim,boxssptr boxs);
boxoutput simply lists every virtual box, along with all the details about it, where
these details are the index, the number of neighbors, the neighbor mid-point, the
number of maximum number of molecules, what the neighbors are, and what the
wrapping codes are.  As the program is currently written, this function is never
called, although it could be to look for errors in box setting up.

void boxssoutput(simptr sim);
boxssoutput displays statistics about the box superstructure, including total number
of boxes, number on each side, dimensions, and the minimium position.  It also
prints out the requested and actual numbers of molecules per box.

void rxnoutput(simptr sim,int order);
rxnoutput displays the complete contents of a reaction structure for order order.  It
also does some other calculations, such as the probability of geminate reactions for
the products and the diffusion and activation limited rate constants.

void checkparams(simptr sim);
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checkparams checks that the simulation parameters, including parameters of sub-
structures, have reasonable values.  If values seem to be too small or too large, a
warning is displayed to the standard output, although this does not affect
continuation of the program.

9.  Command interpreter routines – smollib2.c

Declaration in smollib2.h:

int docommand(void *cmdfnarg,cmdptr cmd,char *line);

Declarations in smollib2.c:

int cmdstop(simptr sim,cmdptr cmd,char *line2);
int cmdpause(simptr sim,cmdptr cmd,char *line2);
int cmdoverwrite(simptr sim,cmdptr cmd,char *line2);
int cmdincrementfile(simptr sim,cmdptr cmd,char *line2);
int cmdifno(simptr sim,cmdptr cmd,char *line2);
int cmdifless(simptr sim,cmdptr cmd,char *line2);
int cmdifmore(simptr sim,cmdptr cmd,char *line2);
int cmdpointsource(simptr sim,cmdptr cmd,char *line2);
int cmdkillmol(simptr sim,cmdptr cmd,char *line2);
int cmdequilmol(simptr sim,cmdptr cmd,char *line2);
int cmdreplacexyzmol(simptr sim,cmdptr cmd,char *line2);
int cmdmodulatemol(simptr sim,cmdptr cmd,char *line2);
int cmdreact1(simptr sim,cmdptr cmd,char *line2);
int cmdmolcount(simptr sim,cmdptr cmd,char *line2);
int cmdlistmols(simptr sim,cmdptr cmd,char *line2);
int cmdlistmols2(simptr sim,cmdptr cmd,char *line2);
int cmdlistmols3(simptr sim,cmdptr cmd,char *line2);
int cmdmolpos(simptr sim,cmdptr cmd,char *line2);
int cmdmolmoments(simptr sim,cmdptr cmd,char *line2);
int cmdsavesim(simptr sim,cmdptr cmd,char *line2);
int cmdexcludebox(simptr sim,cmdptr cmd,char *line2);
int cmdexcludesphere(simptr sim,cmdptr cmd,char *line2);
int cmdincludeecoli(simptr sim,cmdptr cmd,char *line2);

int insideecoli(float *pos,float *ofst,float rad,float length);
void putinecoli(float *pos,float *ofst,float rad,float length);

Command strings are not parsed, checked, or even looked at during simulation
initiallization.  Instead, they are run by the command interpreter during the simulation.
Command routines are given complete freedom to look at and/or modify any part of a
simulation structure or sub-structure.  This, of course, also gives commands the ability to
crash the computer program, so they need to be written carefully to prevent this.  Every
command is sent a pointer to the simulation structure in sim, as well as a string of
command parameters in line2.

int docommand(void *cmdfnarg,cmdptr cmd,char *line);
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docommand is given the simulation structure in sim, the command to be executed in
cmd, and a line of text which includes the entire command string.  It parses the line
of text only into the first word, which specifies which command is to be run, and
into the rest of the line, which contains the command parameters.  The rest of the
line is then sent to the appropriate command routine as line2.  The return value of
the command that was called is passed back to the main program from docommand.
These routines return 0 for normal operation, 1 for an error that does not require
simulation termination, 2 for an error that requires simulation termination, and 3 for
a time step termination but no simulation termination (for pausing).

int cmdstop(simptr sim,cmdptr cmd,char *line2);
cmdstop returns a value of 2, meaning that the simulation should stop.  Any contents
of line2 are ignored.

int cmdpause(simptr sim,cmdptr cmd,char *line2);
cmdpause causes the simulation to pause until the user tells it to continue.
Continuation is effected by either pressing the space bar, if OpenGL is used for
graphics, or by pressing enter if output is text only.  The return value is 0 for non-
graphics and 3 for graphics.  Any contents of line2 are ignored.

int cmdoverwrite(simptr sim,cmdptr cmd,char *line2);
cmdoverwrite overwrites a prior output file.  See the user manual.

int cmdincrementfile(simptr sim,cmdptr cmd,char *line2);
cmdincrementfile closes a file, increments the name and opens that one for output.
See the user manual.

int cmdifno(simptr sim,cmdptr cmd,char *line2);
cmdifno reads the first word of line2 for a molecule name and then checks the
appropriate simulation live list to see if any molecules of that type exist.  If so, it
does nothing, but returns 0.  If not, it sends the remainder of line2 to docommand to
be run as a new command, and then returns 0.  It returns 1 if the molecule name was
missing or not recognized.

int cmdifless(simptr sim,cmdptr cmd,char *line2);
cmdifless is identical to cmdifno, except that it runs the command in line2 if there
are less than a listed number of a kind of molecules in the approriate live list.

int cmdifmore(simptr sim,cmdptr cmd,char *line2);
cmdifmore is identical to cmdifno except that it runs the command in line2 if there
are more than a listed number of a kind of molecules in the appropriate live list.

int cmdpointsource(simptr sim,cmdptr cmd,char *line2);
cmdpointsource reads line2 for a molecule name, followed by the number of
molecules that should be created, followed by the dim dimensional position for
them.  If all reads well, it creates the new molecules in the system at the approriate
position.  They are added to the dead list and then the lists are sorted.
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int cmdkillmol(simptr sim,cmdptr cmd,char *line2);
cmdkillmol reads line2 for a molecule name and then kills all molecules of that
name from the appropriate live list by setting their identities to 0.  The molecule
lists are then sorted.

int cmdequilmol(simptr sim,cmdptr cmd,char *line2);
cmdequilmol equilibrates a pair of molecular species, allowing the efficient
simulation of rapid reactions.  It reads two molecule names from line2, followed by
a probability value.  Then, it looks for all molecules in the live lists with either of
the two types and replaces them with the second type using the listed probability or
with the first type using 1– the listed probability.

int cmdreplacexyzmol(simptr sim,cmdptr cmd,char *line2);
cmdreplacexyzmol reads the name of a molecule following by a dim dimensional
point in space from line2.  Then, it searches the fixed live list for any molecule that
is exactly at the designated point.  If it encounters one, it is replaced by the listed
molecule, and then the live lists are sorted if appropriate.  This routine stops
searching after one molecule has been found, and so will miss additional molecules
that are at the same point.

int cmdmodulatemol(simptr sim,cmdptr cmd,char *line2);
cmdmodulatemol is identical to cmdequilmol except that the equilibration probability
is not fixed, but is a sinusoidally varying function.  After reading two molecule
names from line2, this routine then reads the cosine wave frequency and phase shift,
then calculates the probability using the function prob=0.5*(1.0-cos(freq*sim-
>time+shift)).

int cmdreact1(simptr sim,cmdptr cmd,char *line2);
cmdreact1 reads line2 for the name of a molecule followed by the name of a
unimolecular reaction.  Then, every one of that type of molecule is caused to
undergo the listed reaction, thus replacing each one by reaction products.
Molecules are sorted at the end.  This might be useful for simulating a pulse of
actinic light, for example.

int cmdmolcount(simptr sim,cmdptr cmd,char *line2);
cmdmolcount reads the output file name from line2.  Then, to this file, it saves one
line of text listing thecurrent simulation time, followed by the number of each type
of molecule in the system.  This routine does not affect any simulation parameters.

int cmdlistmols(simptr sim,cmdptr cmd,char *line2);
cmdlistmols reads the output file name from line2.  To this file, it saves a list of
every individual molecule in both live lists of the simulation, along with their
positions.  This routine does not affect any simulation parameters.

int cmdlistmols2(simptr sim,cmdptr cmd,char *line2);
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cmdlistmols2 reads the output file name from line2.  To this file, it saves the
number of times this command was invoked using the invoke element of
commands, a list of every individual molecule in both live lists of the simulation,
along with their positions.  This routine does not affect any simulation parameters.
Routine originally written by Karen Lipkow and then rewritten by me.

int cmdlistmols3(simptr sim,cmdptr cmd,char *line2);
cmdlistmols3 reads a molecule name and the output file name from line2.  To this
file, it saves the number of times the command was invoked, the identity of the
molecule specified, and the positions of every molecule of the specified type.  This
routine does not affect any simulation parameters.

int cmdmolpos(simptr sim,cmdptr cmd,char *line2);
cmdmolpos reads a molecule name and then the output file name from line2.  To this
file, it saves one line of text with the positions of each molecule of the listed
identity.  This routine does not affect any simulation parameters.

int cmdmolmoments(simptr sim,cmdptr cmd,char *line2);
cmdmolmoments reads a molecule name and then the output file name from line2.  To
this file, it saves in one line of text: the time and the zeroth, first, and second
moments of the distribution of positions for all molecules of the type listed.  The
zeroth moment is just the number of molecules (of the proper identity); the first
moment is a dim dimensional vector for the mean position; and the second moment
is a dimxdim matrix of variances.  This routine does not affect any simulation
parameters.

int cmdsavesim(simptr sim,cmdptr cmd,char *line2);
cmdsavesim reads the output file name from line2 and then saves the complete state
of the system to this file, as a configuration file.  This output can be run later on to
continue the simulation from the point where it was saved.

int cmdexcludebox(simptr sim,cmdptr cmd,char *line2);
cmdexcludebox allows a region of the simulation volume to be effectively closed off
to molecules.  The box is defined by its low and high corners, which are read from
line2.  Any molecule, of any type, that entered the box during the last time step, as
determined by its pos and posx structure members, is moved back to its previous
position.  This is not the correct behavior for a reflective surface, but is efficient and
expected to be reasonably accurate for most situations.  This routine ought to be
replaced with a proper treatment of surfaces in the main program (rather than with
interpreter commands), but that’s a lot more difficult.

int cmdexcludesphere(simptr sim,cmdptr cmd,char *line2);
cmdexcludesphere is like cmdexcludebox except that it excludes a sphere rather than
a box.  The sphere is defined by its center and radius, which are read from line2.
Any molecule, of any type, that entered the sphere during the last time step, as
determined by its pos and posx structure members, is moved back to its previous
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position.  This is not the correct behavior for a reflective surface, but is efficient and
expected to be reasonably accurate for most situations.

int cmdincludeecoli(simptr sim,cmdptr cmd,char *line2);
cmdincludeecoli is the opposite of the excludebox and excludesphere commands.
Here, molecules are confined to an E. coli shape and are put back inside it if they
leave.  See the user manual for more about it.  Unlike the other rejection method
commands, this one works even if a molecule was in a forbidden region during the
previous time step; in this case, the molecule is moved to the point on the E. coli
surface that is closest.  Because of this difference, this command works reasonably
well even if it is not called at every time step.

int insideecoli(float *pos,float *ofst,float rad,float length);
This is a short utility routine used by the command cmdincludeecoli.  It returns a 1
if a molecule is inside an E. coli shape and a 0 if not.  pos is the molecule position,
ofst is the physical location of the cell membrane at the center of the low end of the
cell (the cell is assumed to have its long axis along the x-axis), rad is the cell radius
used for both the cylindrical body and the hemispherical ends, and length is the
total cell length, including both hemispherical ends.

void putinecoli(float *pos,float *ofst,float rad,float length);
This is another short utility routine used by the command cmdincludeecoli.  It
moves a molecule from its initial position in pos to the nearest surface of an E. coli
shape.  Parameters are the same as those for insideecoli.

10.  Simulation management routines and main() – smoldyn.c

Declarations in smoldyn.c that do not require OpenGL:

int simulatetimestep(simptr sim,int ctr[]);
void endsimulate(simptr sim,int vb,int ctr[],time_t tstt,int er);
void smolsimulate(simptr sim,int vb);
int main(int argc,char *argv[]);

Declarations in smoldyn.c that require OpenGL:

void RenderScene(void);
void TimerFunction(int value);
void smolsimulategl(simptr sim,int vb);

The source code file smoldyn.c contains high level functions that allow program
entry from the shell, exit to the shell, functions that manage the simulation, and functions
that take care of graphics.  These functions are all declared locally and thus cannot be
called from externally.  The structure of this segment is largely determined by the
constraints of the OpenGL framework, in which control is passed from the main program
to OpenGL and is never returned.  As a result, the only way to quit a simulation that uses
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graphics is either by having the user choose quit from the menu or with the standard
library command exit(0).  The former method was chosen, but has the drawback that
there is no way to free the simulation structure before terminating the program.  Instead,
Smoldyn relies on the system to free the allocated memory.  Without graphics, a more
conventional C structure is used, including freeing of memory upon completion and a
normal return to the shell, although the structure of the code is still slightly strange due to
its need to be compatible with the OpenGL segment.

Routines in which OpenGL is required

void RenderScene(void);
RenderScene is the call-back function for OpenGL that displays the graphics.  This
function simply draws a box for the simulation volume, as well as points for each
molecule.  It uses the global Sim variable.

void TimerFunction(int value);
TimerFunction is the call-back function for OpenGL that runs the simulation.  It
always tells OpenGL to update the graphics and to call back.  If value is 0 and the
simulation has not been paused, this means that the simulation is continuing, so this
routine simulates one or more simulation time steps (the value depends on sim-
>graphicit).  Otherwise, it does not do any computations because either the
simulation has been paused (gl2State equal to 1) or the simulation is complete
(value equal to 1).  In these cases, the user can manipulate the graphics or quit the
program.  When the uses quits the program, the event is captured by OpenGL,
which then transfers control directly to the shell.  A modification new to version
1.52 is that if gl2State returns 2, this indicates that the user pressed ‘Q’ to indicate
that the simulation should stop, as though it had completed normally.

void smolsimulategl(simptr sim,int vb);
smolsimulategl starts the simulation using OpenGL graphics.  It does all OpenGL
initializations, registers OpenGL call-back functions, sets the global variables to
their proper values, and then hands control over to OpenGL.  This function does not
return.

No OpenGL required

int simulatetimestep(simptr sim,int ctr[]);
simulatetimestep runs the simulation over one time step.  If an error is encountered
at any step, or a command tells the simulation to stop, or the simulation time
becomes greater than or equal to the requested maximum time, the function returns
an error code to indicate that the simulation should stop; otherwise it returns 0 to
indicate that the simulation should continue.  Error codes are 1 for simulation
completed normally, 2 for error with assignmolecs, 3 for error with zeroreact, 4 for
error with unireact, 5 for error with bireact, 6 for error with molsort, or 7 for
terminate instruction from docommand (e.g. stop command).  Errors 2 and 6 arise
from insufficient memory when boxes were being exanded and errors 3, 4, and 5
arise from too few molecules being allocated initially.
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void endsimulate(simptr sim,int vb,int ctr[],time_t tstt,int er);
endsimulate takes care of things that should happen when the simulation is
complete.  This includes executing any commands that are supposed to happen after
the simulation, displaying numbers of simulation events that occurred, and
calculating the execution time.  er is a code to tell why the simulation is ending,
which has the same values as those returned by simulatetimestep.  If graphics are
used, this routine just returns to where it was called from (which is TimerFunction);
otherwise, it frees the simulation structure and then returns (to smolsimulate and
then main).

void smolsimulate(simptr sim,int vb);
smolsimulate runs the simulation without graphics.  It does essentially nothing
other than running simulatetimestep until the simulation terminates.  At the end, it
calls endsimulate and returns.

int main(int argc,char *argv[]);
main is a simple routine that provides an entry point to the program.  It checks the
command line arguments, prints a greeting, inputs the configuration file name from
the user, and then calls setupstructs to load the configuration file and set up all the
structures.  If all goes well, it calls simulate or simulategl to run the simulation.
As OpenGL never returns control to the main program, the exit point of Smoldyn is
only here is OpenGL is not used.

11.  Smoldyn modifications

Modifications made for version 1.5 (released 7/03).

Added heirarchical configuration file name support.
Zeroreact assigns the correct box for new molecules.
The user can choose the level of detail for the bimolecular interactions (just local, nearest

neighbor, all neighbor, including periodic, etc.)
Bimolecular reactions were slow if most boxes are empty.  Solution was to go down

molecule list rather than box list.
Absorbing wall probabilities were made correct to yield accurate absorption dynamics at

walls.
Cleaned up and got rid of old commands.
The current time input was made useful.
Graphics were improved by adding perspective and better user manipulation.
Simulation pausing was made possible using graphics and improved without graphics.
If a command was used with a wrong file name, the command string became corrupted

during the final command call.  This was fixed by Steve Lay.
Fixed the neighbor list for bimolecular reactions between mobile and immobile reactants.
Reactions were made possible around periodic boundaries.
Molecules were lost sometimes.  This bug was fixed: 4 lines before end of molsort:
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was:   while(!live[m]) {
now:  while(!live[m]&&m<nl[ll]) {

Output files now allow the configuration file to be in a different folder as Smoldyn.
Added an output file root parameter.
Added the command replacexyzmol.  Afterwards, the code for the command was sped up

considerably.
Sped up the command excludebox.
Command time reports were fixed for type b and a commands.
Added more types of command timing codes.
Improved accuracy of unireact so that it correctly accounts for multiple reactions from

one identity.
Improved product parameter entry and calculation, as well as the output about reaction

parameters.
Added the routine checkparams to check that the simulation parameters are reasonable.

Modifications made for version 1.51 (released 9/5/03).

Fixed a minor bug in doreact which allowed the molecule superstructure indicies to
become illegal if not enough molecules were allocated.

Fixed a minor bug in cmdreact1 which did not check for errors from doreact.
Added command molpos.
Moved version number from a printf statement to a macro, in smoldyn.c file.
Added command listmols2, from a file sent to me by Karen Lipkow.
Fixed a minor bug in checkparams that printed warnings for unusued reactions.
In simulatetimestep in smoldyn.c, the order of operations was diffuse, checkwalls, and

then assignmolecs.  The latter two were swapped, which should make wall
checking more accurate when time steps are used that are so long that rms step
lengths are a large fraction of box sizes.  The new version is less accurate than
before when the simulation accuracy is less than 10, but should be more accurate
when it is 10.

Replaced the coinrand call in unireact, which determines if a reaction occured, with
coinrand30 to allow better accuracy with low probabilities.  Also changed the
relevent check in checkparams.

Improved reactive volume test in checkparams.
Increased RANDTABLEMAX from 2047 to 4095.
Some modifications were made to random.h.
Fixed a major bug in rxnfree, regarding the freeing of the table elements.

Modifications made for version 1.52 (released 10/24/03)

Changed comments in rxnparam.h and rxnparam.c, but no changes in code.
Changed cmdsavesim in smollib2.c to allow it to compile with gcc.
Added another call to assignmolecs in simulatetimestep in smoldyn.c, after the call to

checkwalls, to make sure that all molecules are assigned properly before checking
reactions.  This slows things down some, but should allow slightly longer time
steps.
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To the opengl2.c file, the KeyPush function was modified so now pressing ‘Q’ sets the
Gl2PauseState to 2, to indicate that a program should quit.  A few modifications
were also made in smoldyn.c function TimerFunction to make use of this.

Corrected two significant bugs in the checkwalls function in smollib.c regarding
absorbing walls.  First, it didn’t work properly for low side walls.  Also, the
probability equation was incorrect, which was noticed by Dan Gillespie.

Fixed a minor bug in cmdsavesim in smollib2.c file, which caused an output line for
rate_internal to be displayed for declared but unused reactions.

Several commented out functions in loadrxn were removed because they were obsolete
and have been replaced by product_param.  They were: p_gem, b_rel, b_abs, offset,
fixed, and irrev.

A command superstructure was created, which moved several structure elements out of
the simulation structure.  No new functionality was created, but the code is cleaner
now.  New routines are cmdssalloc and cmdssfree.  Updated routines are: simalloc,
simfree, loadsimul, setupstructs, cmdoutput (including function declaration),
openoutputfiles (including function declaration and ending state if an error
occurs), commandpop (including function declaration), checkcommand, endsimulate,
savesim, main, and all commands that save data to files.

Renamed the “test files” folder to “test_files”.

Modifications made for version 1.53 (released 2/9/04)

Cleaned up commands a little more by writing routine getfptr in smollib2.c and calling
it from commands that save data, rather than repeating the code each time.

All routines that dealt with the command framework were moved to their own library,
called SimCommands.  This also involved a few function name and argument
changes, affecting smoldyn.c, smollib.c, smollib.h, smollib2.c, and smollib2.h.

Formatting was cleaned up for structure output routines.
Swapped drawing of box and molecules, so box is on top.  Also increased default box

line width to 2 point.
Computer now beeps when simulation is complete.
Modified SimCommand library so that each invocation of a command is counted and also

changed declaration for docommand in smollib2.  This change was useful for
improving the command listmols2 so it can be run with several independent time
counters.  Also, wrote command listmols3.

Wrote the new configuration file statement boxsize.
Wrote the new commands excludesphere and includeecoli.
Wrote the commands overwrite and incrementfile, which also involved some changes

to the SimCommand library and required the new configuration file statement
output_file_number.

Added a new configuration file statement frame_thickness.
When simulation is paused using OpenGL, the simulation time at which it was paused is

now displayed to the text window.

Modifications made for version 1.54 (released 3/3/04)
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Swapped order of commands and OpenGL drawing so that commands are executed
before displaying results.  Also wrote section 3.2 of the documentation to discuss
this ordering and other timing issues.

Wrote documentation section 3.3 on surface effects on reaction rates and added the
reactW set of test files.

The wish list

Addition of internal surfaces.  There is a tremendous amount that would be very nice
here.  The simplest addition would be simple reflective surfaces.  Next are semi-
permeable surfaces, non-diffusing membrane-bound molecules, diffusing
membrane-bound molecules, moveable surfaces, etc.  Similarly, it would be nice to
have fibers (such as DNA), fiber-bound molecules, etc.

Variable simulation time steps.  The less difficult method would be to figure out how fast
the system is changing as a whole and to adjust the simulation time step to
compensate for this.  A challenge though, is that it is nearly impossible to redo a
step that was determined to have been too long without introducing significant
statistical bias.  The more difficult method is to use different length time steps for
different molecules, so as to poll labile ones more often than stable ones.

More functionality for the runtime command interpreter.  It would be nice if commands
could communicate with each other, have their own storage space, etc.  An idea for
this is to establish a bulletin board within the command superstructure, on which
commands could post and read memos.  Also, it would be nice to avoid round-off
errors when using ‘e’ or ‘n’ timing codes; similarly, ‘n’ should work properly with
non-uniform time steps.

Ability to store graphics as a TIFF, Quicktime movie or in some other standard format.
More graphics manipulations, such as panning, and changing viewing position.
Configuration file compatibility with SBML, XML, or other standards.  Also, inclusion

of Smoldyn into BioSpice.
Inclusion of continuous concentrations for chemical species that are abundant.


